This file is indexed.

/usr/include/openturns/swig/FAST_doc.i is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
%feature("docstring") OT::FAST
"Fourier Amplitude Sensitivity Testing (FAST).

Available constructor:
    FAST(*model, distribution, N, Nr=1, M=4*)

Parameters
----------
model : :class:`~openturns.Function`
    Definition of the model to analyse.
distribution : :class:`~openturns.Distribution`
    Contains the distributions of each model's input.
    Its dimension must be equal to the number of inputs.
N : int, :math:`N > Nr`
    Size of the sample from which the Fourier series are calculated.
    It represents the length of the discretization of the s-space.
Nr : int, :math:`Nr \\\\geq 1`
    Number of resamplings. The extended FAST method involves a part of
    randomness in the computation of the indices. So it can be asked to
    realize the procedure *Nr* times and then to calculate the
    arithmetic means of the results over the *Nr* estimates.
M : int, :math:`0 < M < N`
    Interference factor usually equal to 4 or higher.
    It corresponds to the truncation level of the Fourier series, i.e. the
    number of harmonics that are retained in the decomposition.

Notes
-----
FAST is a sensitivity analysis method which is based upon the ANOVA
decomposition of the variance of the model response :math:`y = f(\\\\vect{X})`,
the latter being represented by its Fourier expansion.
:math:`\\\\vect{X}=\\\\{X^1,\\\\dots,X^{n_X}\\\\}` is an input random vector of :math:`n_X`
independent components.

OpenTURNS implements the extended FAST method consisting in computing
alternately the first order and the total-effect indices of each input.
This approach, widely described in the paper by [Saltelli1999]_, relies upon a
Fourier decomposition of the model response. Its key idea is to recast this
representation as a function of a *scalar* parameter :math:`s`, by defining
parametric curves :math:`s \\\\mapsto x_i(s), i=1, \\\\dots, n_X` exploring the
support of the input random vector :math:`\\\\vect{X}`.

Then the Fourier expansion of the model response is:

.. math::

    f(s) = \\\\sum_{k \\\\in \\\\Zset^N} A_k cos(ks) + B_k sin(ks)

where :math:`A_k` and :math:`B_k` are Fourier coefficients whose estimates are:

.. math::

    \\\\hat{A}_k &= \\\\frac{1}{N} \\\\sum_{j=1}^N f(x_j^1,\\\\dots,x_j^{N_X}) cos\\\\left(\\\\frac{2k\\\\pi (j-1)}{N} \\\\right) \\\\quad , \\\\quad -\\\\frac{N}{2} \\\\leq k \\\\leq \\\\frac{N}{2} \\\\\\\\
    \\\\hat{B}_k &= \\\\frac{1}{N} \\\\sum_{j=1}^N f(x_j^1,\\\\dots,x_j^{N_X}) sin\\\\left(\\\\frac{2k\\\\pi (j-1)}{N} \\\\right) \\\\quad , \\\\quad -\\\\frac{N}{2} \\\\leq k \\\\leq \\\\frac{N}{2}


The first order indices are estimated by:

.. math::

    \\\\hat{S}_i = \\\\frac{\\\\hat{D}_i}{\\\\hat{D}}
              = \\\\frac{\\\\sum_{p=1}^M(\\\\hat{A}_{p\\\\omega_i}^2 + \\\\hat{B}_{p\\\\omega_i}^2)^2}
                      {\\\\sum_{n=1}^{(N-1)/2}(\\\\hat{A}_n^2 + \\\\hat{B}_n^2)^2}

and the total order indices by:

.. math::

    \\\\hat{T}_i = 1 - \\\\frac{\\\\hat{D}_{-i}}{\\\\hat{D}}
              = 1 - \\\\frac{\\\\sum_{k=1}^{\\\\omega_i/2}(\\\\hat{A}_k^2 + \\\\hat{B}_k^2)^2}
                          {\\\\sum_{n=1}^{(N-1)/2}(\\\\hat{A}_n^2 + \\\\hat{B}_n^2)^2}

where :math:`\\\\hat{D}` is the total variance, :math:`\\\\hat{D}_i` the portion
of :math:`D` arising from the uncertainty of the :math:`i^{th}` input and
:math:`\\\\hat{D}_{-i}` is the part of the variance due to all the inputs
except the :math:`i^{th}` input.

:math:`N` is the size of the sample using to compute the Fourier series and
:math:`M` is the interference factor. *Saltelli et al.* (1999) recommanded to
set :math:`M` to a value in the range :math:`[4, 6]`.
:math:`\\\\{\\\\omega_i\\\\}, \\\\forall i=1, \\\\dots, n_X` is a set of integer frequencies
assigned to each input :math:`X^i`. The frequency associated with the input
for which the sensitivity indices are computed, is set to the maximum admissible
frequency satisfying the Nyquist criterion (which ensures to avoid aliasing effects):

.. math::

    \\\\omega_i = \\\\frac{N - 1}{2M}

In the paper by Saltelli et al. (1999), for high sample size, it is suggested
that :math:`16 \\\\leq \\\\omega_i/N_r \\\\leq 64`.


Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> formulaIshigami = ['sin(_pi*X1)+7*sin(_pi*X2)*sin(_pi*X2)+0.1*((_pi*X3)*(_pi*X3)*(_pi*X3)*(_pi*X3))*sin(_pi*X1)']
>>> modelIshigami = ot.SymbolicFunction(['X1', 'X2', 'X3'], formulaIshigami)
>>> distributions = ot.ComposedDistribution([ot.Uniform(-1.0, 1.0)] * 3)
>>> sensitivityAnalysis = ot.FAST(modelIshigami, distributions, 101)
>>> print(sensitivityAnalysis.getFirstOrderIndices())
[0.311097,0.441786,0.000396837]"

// ---------------------------------------------------------------------

%feature("docstring") OT::FAST::getFirstOrderIndices
"Accessor to the first order indices.

Parameters
----------
marginalIndex : int, :math:`0 \\\\leq i < n`, optional
    Index of the model's marginal used to estimate the indices.
    By default, marginalIndex is equal to 0.

Returns
-------
indices : :class:`~openturns.Point`
    List of the first order indices of all the inputs."

// ---------------------------------------------------------------------

%feature("docstring") OT::FAST::getTotalOrderIndices
"Accessor to the total order indices.

Parameters
----------
marginalIndex : int, :math:`0 \\\\leq i < n`, optional
    Index of the model's  marginal used to estimate the indices.
    By default, marginalIndex is equal to 0.

Returns
-------
indices : :class:`~openturns.Point`
    List of the total-effect order indices of all the inputs."

// ---------------------------------------------------------------------

%feature("docstring") OT::FAST::setFFTAlgorithm
"Accessor to the FFT algorithm implementation.

Parameters
----------
fft : a :class:`~openturns.FFT`
    A FFT algorithm."

// ---------------------------------------------------------------------

%feature("docstring") OT::FAST::getFFTAlgorithm
"Accessor to the FFT algorithm implementation.

Returns
-------
fft : a :class:`~openturns.FFT`
    A FFT algorithm."

// ---------------------------------------------------------------------

%feature("docstring") OT::FAST::getBlockSize
"Get the block size.

Returns
-------
k : positive int
    Size of each block the sample is splitted into, this allows to save space
    while allowing multithreading, when available we recommend to use
    the number of available CPUs, set by default to 1."

// ---------------------------------------------------------------------

%feature("docstring") OT::FAST::setBlockSize
"Set the block size.

Parameters
----------
k : positive int
    Size of each block the sample is splitted into, this allows to save space
    while allowing multithreading, when available we recommend to use
    the number of available CPUs, set by default to :math:`1`."