/usr/include/openturns/swig/FAST_doc.i is in libopenturns-dev 1.9-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 | %feature("docstring") OT::FAST
"Fourier Amplitude Sensitivity Testing (FAST).
Available constructor:
FAST(*model, distribution, N, Nr=1, M=4*)
Parameters
----------
model : :class:`~openturns.Function`
Definition of the model to analyse.
distribution : :class:`~openturns.Distribution`
Contains the distributions of each model's input.
Its dimension must be equal to the number of inputs.
N : int, :math:`N > Nr`
Size of the sample from which the Fourier series are calculated.
It represents the length of the discretization of the s-space.
Nr : int, :math:`Nr \\\\geq 1`
Number of resamplings. The extended FAST method involves a part of
randomness in the computation of the indices. So it can be asked to
realize the procedure *Nr* times and then to calculate the
arithmetic means of the results over the *Nr* estimates.
M : int, :math:`0 < M < N`
Interference factor usually equal to 4 or higher.
It corresponds to the truncation level of the Fourier series, i.e. the
number of harmonics that are retained in the decomposition.
Notes
-----
FAST is a sensitivity analysis method which is based upon the ANOVA
decomposition of the variance of the model response :math:`y = f(\\\\vect{X})`,
the latter being represented by its Fourier expansion.
:math:`\\\\vect{X}=\\\\{X^1,\\\\dots,X^{n_X}\\\\}` is an input random vector of :math:`n_X`
independent components.
OpenTURNS implements the extended FAST method consisting in computing
alternately the first order and the total-effect indices of each input.
This approach, widely described in the paper by [Saltelli1999]_, relies upon a
Fourier decomposition of the model response. Its key idea is to recast this
representation as a function of a *scalar* parameter :math:`s`, by defining
parametric curves :math:`s \\\\mapsto x_i(s), i=1, \\\\dots, n_X` exploring the
support of the input random vector :math:`\\\\vect{X}`.
Then the Fourier expansion of the model response is:
.. math::
f(s) = \\\\sum_{k \\\\in \\\\Zset^N} A_k cos(ks) + B_k sin(ks)
where :math:`A_k` and :math:`B_k` are Fourier coefficients whose estimates are:
.. math::
\\\\hat{A}_k &= \\\\frac{1}{N} \\\\sum_{j=1}^N f(x_j^1,\\\\dots,x_j^{N_X}) cos\\\\left(\\\\frac{2k\\\\pi (j-1)}{N} \\\\right) \\\\quad , \\\\quad -\\\\frac{N}{2} \\\\leq k \\\\leq \\\\frac{N}{2} \\\\\\\\
\\\\hat{B}_k &= \\\\frac{1}{N} \\\\sum_{j=1}^N f(x_j^1,\\\\dots,x_j^{N_X}) sin\\\\left(\\\\frac{2k\\\\pi (j-1)}{N} \\\\right) \\\\quad , \\\\quad -\\\\frac{N}{2} \\\\leq k \\\\leq \\\\frac{N}{2}
The first order indices are estimated by:
.. math::
\\\\hat{S}_i = \\\\frac{\\\\hat{D}_i}{\\\\hat{D}}
= \\\\frac{\\\\sum_{p=1}^M(\\\\hat{A}_{p\\\\omega_i}^2 + \\\\hat{B}_{p\\\\omega_i}^2)^2}
{\\\\sum_{n=1}^{(N-1)/2}(\\\\hat{A}_n^2 + \\\\hat{B}_n^2)^2}
and the total order indices by:
.. math::
\\\\hat{T}_i = 1 - \\\\frac{\\\\hat{D}_{-i}}{\\\\hat{D}}
= 1 - \\\\frac{\\\\sum_{k=1}^{\\\\omega_i/2}(\\\\hat{A}_k^2 + \\\\hat{B}_k^2)^2}
{\\\\sum_{n=1}^{(N-1)/2}(\\\\hat{A}_n^2 + \\\\hat{B}_n^2)^2}
where :math:`\\\\hat{D}` is the total variance, :math:`\\\\hat{D}_i` the portion
of :math:`D` arising from the uncertainty of the :math:`i^{th}` input and
:math:`\\\\hat{D}_{-i}` is the part of the variance due to all the inputs
except the :math:`i^{th}` input.
:math:`N` is the size of the sample using to compute the Fourier series and
:math:`M` is the interference factor. *Saltelli et al.* (1999) recommanded to
set :math:`M` to a value in the range :math:`[4, 6]`.
:math:`\\\\{\\\\omega_i\\\\}, \\\\forall i=1, \\\\dots, n_X` is a set of integer frequencies
assigned to each input :math:`X^i`. The frequency associated with the input
for which the sensitivity indices are computed, is set to the maximum admissible
frequency satisfying the Nyquist criterion (which ensures to avoid aliasing effects):
.. math::
\\\\omega_i = \\\\frac{N - 1}{2M}
In the paper by Saltelli et al. (1999), for high sample size, it is suggested
that :math:`16 \\\\leq \\\\omega_i/N_r \\\\leq 64`.
Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> formulaIshigami = ['sin(_pi*X1)+7*sin(_pi*X2)*sin(_pi*X2)+0.1*((_pi*X3)*(_pi*X3)*(_pi*X3)*(_pi*X3))*sin(_pi*X1)']
>>> modelIshigami = ot.SymbolicFunction(['X1', 'X2', 'X3'], formulaIshigami)
>>> distributions = ot.ComposedDistribution([ot.Uniform(-1.0, 1.0)] * 3)
>>> sensitivityAnalysis = ot.FAST(modelIshigami, distributions, 101)
>>> print(sensitivityAnalysis.getFirstOrderIndices())
[0.311097,0.441786,0.000396837]"
// ---------------------------------------------------------------------
%feature("docstring") OT::FAST::getFirstOrderIndices
"Accessor to the first order indices.
Parameters
----------
marginalIndex : int, :math:`0 \\\\leq i < n`, optional
Index of the model's marginal used to estimate the indices.
By default, marginalIndex is equal to 0.
Returns
-------
indices : :class:`~openturns.Point`
List of the first order indices of all the inputs."
// ---------------------------------------------------------------------
%feature("docstring") OT::FAST::getTotalOrderIndices
"Accessor to the total order indices.
Parameters
----------
marginalIndex : int, :math:`0 \\\\leq i < n`, optional
Index of the model's marginal used to estimate the indices.
By default, marginalIndex is equal to 0.
Returns
-------
indices : :class:`~openturns.Point`
List of the total-effect order indices of all the inputs."
// ---------------------------------------------------------------------
%feature("docstring") OT::FAST::setFFTAlgorithm
"Accessor to the FFT algorithm implementation.
Parameters
----------
fft : a :class:`~openturns.FFT`
A FFT algorithm."
// ---------------------------------------------------------------------
%feature("docstring") OT::FAST::getFFTAlgorithm
"Accessor to the FFT algorithm implementation.
Returns
-------
fft : a :class:`~openturns.FFT`
A FFT algorithm."
// ---------------------------------------------------------------------
%feature("docstring") OT::FAST::getBlockSize
"Get the block size.
Returns
-------
k : positive int
Size of each block the sample is splitted into, this allows to save space
while allowing multithreading, when available we recommend to use
the number of available CPUs, set by default to 1."
// ---------------------------------------------------------------------
%feature("docstring") OT::FAST::setBlockSize
"Set the block size.
Parameters
----------
k : positive int
Size of each block the sample is splitted into, this allows to save space
while allowing multithreading, when available we recommend to use
the number of available CPUs, set by default to :math:`1`."
|