This file is indexed.

/usr/include/openturns/swig/ExponentiallyDampedCosineModel_doc.i is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
%feature("docstring") OT::ExponentiallyDampedCosineModel
"Exponentially damped cosine covariance function.

Available constructors:
    ExponentiallyDampedCosineModel(*spatialDim=1*)

    ExponentiallyDampedCosineModel(*scale, amplitude, f*)

Parameters
----------
spatialDim : int
    Spatial dimension :math:`n`.
    By default, equal to 1.
scale : sequence of floats
    Scale coefficient :math:`\\\\vect{\\\\theta}\\\\in \\\\Rset^n`.
    The size of :math:`\\\\vect{\\\\theta}` is the spatial dimension.
amplitude : sequence of positive floats
    Amplitude of the process :math:`\\\\vect{\\\\sigma} \\\\in \\\\Rset^d`.
    Must be of size equal to 1.
    By default, equal to :math:`[1]`.
f : positive float
    Frequency parameter.

Notes
-----
The *exponentially damped cosine* function is a stationary covariance function whith dimension :math:`d=1`.

We consider the scalar stochastic process :math:`X: \\\\Omega \\\\times\\\\cD \\\\mapsto \\\\Rset`, where :math:`\\\\omega \\\\in \\\\Omega` is an event, :math:`\\\\cD` is a domain of :math:`\\\\Rset^n`.

The  *exponentially damped cosine* covariance function is defined by:

.. math::

    C(\\\\vect{s}, \\\\vect{t}) = \\\\sigma^2 e^{\\\\left(-\\\\left\\\\|\\\\dfrac{\\\\vect{s}-\\\\vect{t}}{\\\\vect{\\\\theta}}\\\\right\\\\|_2\\\\right)} \\\\cos\\\\left(2 \\\\pi f \\\\left\\\\|\\\\dfrac{\\\\vect{s}-\\\\vect{t}}{\\\\vect{\\\\theta}}\\\\right\\\\|_2 \\\\right), \\\\quad \\\\forall (\\\\vect{s}, \\\\vect{t}) \\\\in \\\\cD

The correlation function :math:`\\\\rho` writes:

.. math::

    \\\\rho(\\\\vect{s}, \\\\vect{t}) = e^{\\\\left(-\\\\left\\\\| \\\\vect{s}- \\\\vect{t}\\\\right\\\\|_2\\\\right)} \\\\cos\\\\left(2 \\\\pi f \\\\left\\\\| \\\\vect{s}-\\\\vect{t} \\\\right\\\\|_2 \\\\right), \\\\quad \\\\forall (\\\\vect{s}, \\\\vect{t}) \\\\in \\\\cD




See Also
--------
CovarianceModel

Examples
--------
Create a standard exponentially damped cosine covariance function:

>>> import openturns as ot
>>> covModel = ot.ExponentiallyDampedCosineModel(2)
>>> t = [0.1, 0.3]
>>> s = [0.5, 0.4]
>>> print(covModel(s, t))
[[ -0.564137 ]]
>>> tau = [0.1, 0.1]
>>> print(covModel(tau))
[[ 0.547367 ]]

Create a exponentially damped cosine  covariance function specifying the amplitude and the scale:

>>> covModel2 = ot.ExponentiallyDampedCosineModel([3.3], [1.2], 5.0)

Create a  exponentially damped cosine  covariance function specifying the amplitude and the scale:

>>> covModel3 = ot.ExponentiallyDampedCosineModel([1.5, 2.5], [3.5], 5.0)"

// ---------------------------------------------------------------------

%feature("docstring") OT::ExponentiallyDampedCosineModel::setFrequency
"Frequency accessor.

Parameters
----------
f : positive float
    Frequency parameter."

// ---------------------------------------------------------------------

%feature("docstring") OT::ExponentiallyDampedCosineModel::getFrequency
"Frequency accessor.

Returns
-------
f : positive float
    Frequency parameter."