This file is indexed.

/usr/include/openturns/swig/ExperimentImplementation_doc.i is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
%define OT_Experiment_doc
"Base class for design of experiments.

Considering :math:`\\\\vect{x}=x^1,\\\\dots, x^n` a vector of input parameters, this
class is used to determine a particular set of values of :math:`\\\\vect{x}`
according to a particular design of experiments.

Different types of design of experiments can be determined:

- some stratified patterns: axial, composite, factorial or box patterns,

- some weighted patterns that we can split into different categories:
  the random patterns, the low discrepancy sequences and the deterministic
  patterns.

Examples
--------
Define a custom design of experiment:
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> class RandomExp(object):
...     def generate(self):
...         return ot.Normal(1).getSample(10)
>>> experiment = ot.Experiment(RandomExp())
>>> sample = experiment.generate()

See also
--------
StratifiedExperiment, WeightedExperiment"
%enddef
%feature("docstring") OT::ExperimentImplementation
OT_Experiment_doc

// ---------------------------------------------------------------------

%define OT_Experiment_generate_doc
"Generate points according to the type of the experiment.

Returns
-------
sample : :class:`~openturns.Sample`
    The points which constitute the design of experiments. The sampling method
    is defined by the nature of the experiment.

Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> myExperiment = ot.Experiment(ot.MonteCarloExperiment(ot.Normal(2),5))
>>> print(myExperiment.generate())
    [ X0        X1        ]
0 : [  0.608202 -1.26617  ]
1 : [ -0.438266  1.20548  ]
2 : [ -2.18139   0.350042 ]
3 : [ -0.355007  1.43725  ]
4 : [  0.810668  0.793156 ]"
%enddef
%feature("docstring") OT::ExperimentImplementation::generate
OT_Experiment_generate_doc

// ---------------------------------------------------------------------

%define OT_Experiment_setImplementation_doc
"Accessor to the underlying implementation.

Parameters
----------
implementation : ExperimentImplementation
    An ExperimentImplementation object.

Examples
--------
>>> import openturns as ot
>>> myExperiment = ot.Experiment(ot.MonteCarloExperiment(ot.Normal(2),5))
>>> myExperimentImplementation = myExperiment.getImplementation()
>>> mySecondExperiment = ot.Experiment()
>>> mySecondExperiment.setImplementation(myExperimentImplementation)"
%enddef
%feature("docstring") OT::ExperimentImplementation::setImplementation
OT_Experiment_setImplementation_doc