/usr/include/openturns/swig/ExperimentImplementation_doc.i is in libopenturns-dev 1.9-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 | %define OT_Experiment_doc
"Base class for design of experiments.
Considering :math:`\\\\vect{x}=x^1,\\\\dots, x^n` a vector of input parameters, this
class is used to determine a particular set of values of :math:`\\\\vect{x}`
according to a particular design of experiments.
Different types of design of experiments can be determined:
- some stratified patterns: axial, composite, factorial or box patterns,
- some weighted patterns that we can split into different categories:
the random patterns, the low discrepancy sequences and the deterministic
patterns.
Examples
--------
Define a custom design of experiment:
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> class RandomExp(object):
... def generate(self):
... return ot.Normal(1).getSample(10)
>>> experiment = ot.Experiment(RandomExp())
>>> sample = experiment.generate()
See also
--------
StratifiedExperiment, WeightedExperiment"
%enddef
%feature("docstring") OT::ExperimentImplementation
OT_Experiment_doc
// ---------------------------------------------------------------------
%define OT_Experiment_generate_doc
"Generate points according to the type of the experiment.
Returns
-------
sample : :class:`~openturns.Sample`
The points which constitute the design of experiments. The sampling method
is defined by the nature of the experiment.
Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> myExperiment = ot.Experiment(ot.MonteCarloExperiment(ot.Normal(2),5))
>>> print(myExperiment.generate())
[ X0 X1 ]
0 : [ 0.608202 -1.26617 ]
1 : [ -0.438266 1.20548 ]
2 : [ -2.18139 0.350042 ]
3 : [ -0.355007 1.43725 ]
4 : [ 0.810668 0.793156 ]"
%enddef
%feature("docstring") OT::ExperimentImplementation::generate
OT_Experiment_generate_doc
// ---------------------------------------------------------------------
%define OT_Experiment_setImplementation_doc
"Accessor to the underlying implementation.
Parameters
----------
implementation : ExperimentImplementation
An ExperimentImplementation object.
Examples
--------
>>> import openturns as ot
>>> myExperiment = ot.Experiment(ot.MonteCarloExperiment(ot.Normal(2),5))
>>> myExperimentImplementation = myExperiment.getImplementation()
>>> mySecondExperiment = ot.Experiment()
>>> mySecondExperiment.setImplementation(myExperimentImplementation)"
%enddef
%feature("docstring") OT::ExperimentImplementation::setImplementation
OT_Experiment_setImplementation_doc
|