/usr/include/openturns/swig/EvaluationImplementation_doc.i is in libopenturns-dev 1.9-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 | %feature("docstring") OT::EvaluationImplementation
"Numerical math evaluation implementation.
Available constructors:
EvaluationImplementation()
See also
--------
Function, AggregatedEvaluation,
DatabaseEvaluation,
DualLinearCombinationEvaluation, LinearFunction
"
// ---------------------------------------------------------------------
%feature("docstring") OT::EvaluationImplementation::addCacheContent
"Add input numerical points and associated output to the cache.
Parameters
----------
input_sample : 2-d sequence of float
Input numerical points to be added to the cache.
output_sample : 2-d sequence of float
Output numerical points associated with the input_sample to be added to the
cache."
// ---------------------------------------------------------------------
%feature("docstring") OT::EvaluationImplementation::clearCache
"Empty the content of the cache."
// ---------------------------------------------------------------------
%feature("docstring") OT::EvaluationImplementation::clearHistory
"Empty the content of the history."
// ---------------------------------------------------------------------
%feature("docstring") OT::EvaluationImplementation::disableCache
"Disable the cache mechanism."
// ---------------------------------------------------------------------
%feature("docstring") OT::EvaluationImplementation::disableHistory
"Disable the history mechanism."
// ---------------------------------------------------------------------
%feature("docstring") OT::EvaluationImplementation::enableCache
"Enable the cache mechanism."
// ---------------------------------------------------------------------
%feature("docstring") OT::EvaluationImplementation::enableHistory
"Enable the history mechanism."
// ---------------------------------------------------------------------
%feature("docstring") OT::EvaluationImplementation::getCacheHits
"Accessor to the number of computations saved thanks to the cache mecanism.
Returns
-------
cacheHits : int
Integer that counts the number of computations saved thanks to the cache
mecanism."
// ---------------------------------------------------------------------
%feature("docstring") OT::EvaluationImplementation::getCacheInput
"Accessor to all the input numerical points stored in the cache mecanism.
Returns
-------
cacheInput : :class:`~openturns.Sample`
All the input numerical points stored in the cache mecanism."
// ---------------------------------------------------------------------
%feature("docstring") OT::EvaluationImplementation::getCacheOutput
"Accessor to all the output numerical points stored in the cache mecanism.
Returns
-------
cacheInput : :class:`~openturns.Sample`
All the output numerical points stored in the cache mecanism."
// ---------------------------------------------------------------------
%feature("docstring") OT::EvaluationImplementation::getCallsNumber
"Accessor to the number of times the function has been called.
Returns
-------
calls_number : int
Integer that counts the number of times the function has been called
since its creation."
// ---------------------------------------------------------------------
%feature("docstring") OT::EvaluationImplementation::getDescription
"Accessor to the description of the inputs and outputs.
Returns
-------
description : :class:`~openturns.Description`
Description of the inputs and the outputs.
Examples
--------
>>> import openturns as ot
>>> f = ot.SymbolicFunction(['x1', 'x2'],
... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6'])
>>> print(f.getDescription())
[x1,x2,y0]"
// ---------------------------------------------------------------------
%feature("docstring") OT::EvaluationImplementation::getHistoryInput
"Accessor to the history of the input values.
Returns
-------
input_history : :class:`~openturns.Sample`
All the input numerical points stored in the history mecanism."
// ---------------------------------------------------------------------
%feature("docstring") OT::EvaluationImplementation::getHistoryOutput
"Accessor to the history of the output values.
Returns
-------
output_history : :class:`~openturns.Sample`
All the output numerical points stored in the history mecanism."
// ---------------------------------------------------------------------
%feature("docstring") OT::EvaluationImplementation::getInputPointHistory
"Accessor to the history of the input points values.
Returns
-------
history : :class:`~openturns.Sample`
All the input points stored in the history mecanism."
// ---------------------------------------------------------------------
%feature("docstring") OT::EvaluationImplementation::getInputParameterHistory
"Accessor to the history of the input parameter values.
Returns
-------
history : :class:`~openturns.Sample`
All the input parameters stored in the history mecanism."
// ---------------------------------------------------------------------
%feature("docstring") OT::EvaluationImplementation::getInputDescription
"Accessor to the description of the inputs.
Returns
-------
description : :class:`~openturns.Description`
Description of the inputs.
Examples
--------
>>> import openturns as ot
>>> f = ot.SymbolicFunction(['x1', 'x2'],
... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6'])
>>> print(f.getInputDescription())
[x1,x2]"
// ---------------------------------------------------------------------
%feature("docstring") OT::EvaluationImplementation::getInputDimension
"Accessor to the number of the inputs.
Returns
-------
number_inputs : int
Number of inputs.
Examples
--------
>>> import openturns as ot
>>> f = ot.SymbolicFunction(['x1', 'x2'],
... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6'])
>>> print(f.getInputDimension())
2"
// ---------------------------------------------------------------------
%feature("docstring") OT::EvaluationImplementation::getMarginal
"Accessor to marginal.
Parameters
----------
indices : int or list of ints
Set of indices for which the marginal is extracted.
Returns
-------
marginal : :class:`~openturns.Function`
Function corresponding to either :math:`f_i` or
:math:`(f_i)_{i \\\\in indices}`, with :math:`f:\\\\Rset^n \\\\rightarrow \\\\Rset^p`
and :math:`f=(f_0 , \\\\dots, f_{p-1})`."
// ---------------------------------------------------------------------
%feature("docstring") OT::EvaluationImplementation::getOutputDescription
"Accessor to the description of the outputs.
Returns
-------
description : :class:`~openturns.Description`
Description of the outputs.
Examples
--------
>>> import openturns as ot
>>> f = ot.SymbolicFunction(['x1', 'x2'],
... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6'])
>>> print(f.getOutputDescription())
[y0]"
// ---------------------------------------------------------------------
%feature("docstring") OT::EvaluationImplementation::getOutputDimension
"Accessor to the number of the outputs.
Returns
-------
number_outputs : int
Number of outputs.
Examples
--------
>>> import openturns as ot
>>> f = ot.SymbolicFunction(['x1', 'x2'],
... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6'])
>>> print(f.getOutputDimension())
1"
// ---------------------------------------------------------------------
%feature("docstring") OT::EvaluationImplementation::getParameterDimension
"Accessor to the dimension of the parameter.
Returns
-------
parameter_dimension : int
Dimension of the parameter."
// ---------------------------------------------------------------------
%feature("docstring") OT::EvaluationImplementation::isCacheEnabled
"Test whether the cache mechanism is enabled or not.
Returns
-------
isCacheEnabled : bool
Flag telling whether the cache mechanism is enabled.
It is disabled by default."
// ---------------------------------------------------------------------
%feature("docstring") OT::EvaluationImplementation::isHistoryEnabled
"Test whether the history mechanism is enabled or not.
Returns
-------
isHistoryEnabled : bool
Flag telling whether the history mechanism is enabled.
It is disabled by default."
// ---------------------------------------------------------------------
%feature("docstring") OT::EvaluationImplementation::setDescription
"Accessor to the description of the inputs and outputs.
Parameters
----------
description : sequence of str
Description of the inputs and the outputs.
Examples
--------
>>> import openturns as ot
>>> f = ot.SymbolicFunction(['x1', 'x2'],
... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6'])
>>> print(f.getDescription())
[x1,x2,y0]
>>> f.setDescription(['a','b','y'])
>>> print(f.getDescription())
[a,b,y]"
// ---------------------------------------------------------------------
%feature("docstring") OT::EvaluationImplementation::setInputDescription
"Accessor to the description of the inputs.
Returns
-------
description : :class:`~openturns.Description`
Description of the inputs."
// ---------------------------------------------------------------------
%feature("docstring") OT::EvaluationImplementation::setOutputDescription
"Accessor to the description of the outputs.
Returns
-------
description : :class:`~openturns.Description`
Description of the outputs."
// ---------------------------------------------------------------------
%feature("docstring") OT::EvaluationImplementation::parameterGradient
"Gradient against the parameters.
Parameters
----------
x : sequence of float
Input point
Returns
-------
parameter_gradient : :class:`~openturns.Matrix`
The parameters gradient computed at x."
// ---------------------------------------------------------------------
%feature("docstring") OT::EvaluationImplementation::getParameter
"Accessor to the parameter values.
Returns
-------
parameter : :class:`~openturns.Point`
The parameter values."
// ---------------------------------------------------------------------
%feature("docstring") OT::EvaluationImplementation::setParameter
"Accessor to the parameter values.
Parameters
----------
parameter : sequence of float
The parameter values."
// ---------------------------------------------------------------------
%feature("docstring") OT::EvaluationImplementation::getParameterDescription
"Accessor to the parameter description.
Returns
-------
parameter : :class:`~openturns.Description`
The parameter description."
// ---------------------------------------------------------------------
%feature("docstring") OT::EvaluationImplementation::setParameterDescription
"Accessor to the parameter description.
Parameters
----------
parameter : :class:`~openturns.Description`
The parameter description."
// ---------------------------------------------------------------------
%feature("docstring") OT::EvaluationImplementation::draw
"Draw the output of function as a :class:`~openturns.Graph`.
Available usages:
draw(*inputMarg, outputMarg, CP, xiMin, xiMax, ptNb*)
draw(*firstInputMarg, secondInputMarg, outputMarg, CP, xiMin_xjMin, xiMax_xjMax, ptNbs*)
draw(*xiMin, xiMax, ptNb*)
draw(*xiMin_xjMin, xiMax_xjMax, ptNbs*)
Parameters
----------
outputMarg, inputMarg : int, :math:`outputMarg, inputMarg \\\\geq 0`
*outputMarg* is the index of the marginal to draw as a function of the marginal
with index *inputMarg*.
firstInputMarg, secondInputMarg : int, :math:`firstInputMarg, secondInputMarg \\\\geq 0`
In the 2D case, the marginal *outputMarg* is drawn as a function of the
two marginals with indexes *firstInputMarg* and *secondInputMarg*.
CP : sequence of float
Central point.
xiMin, xiMax : float
Define the interval where the curve is plotted.
xiMin_xjMin, xiMax_xjMax : sequence of float of dimension 2.
In the 2D case, define the intervals where the curves are plotted.
ptNb : int :math:`ptNb > 0` or list of ints of dimension 2 :math:`ptNb_k > 0, k=1,2`
The number of points to draw the curves.
Notes
-----
We note :math:`f: \\\\Rset^n \\\\rightarrow \\\\Rset^p`
where :math:`\\\\vect{x} = (x_1, \\\\dots, x_n)` and
:math:`f(\\\\vect{x}) = (f_1(\\\\vect{x}), \\\\dots,f_p(\\\\vect{x}))`,
with :math:`n\\\\geq 1` and :math:`p\\\\geq 1`.
- In the first usage:
Draws graph of the given 1D *outputMarg* marginal
:math:`f_k: \\\\Rset^n \\\\rightarrow \\\\Rset` as a function of the given 1D *inputMarg*
marginal with respect to the variation of :math:`x_i` in the interval
:math:`[x_i^{min}, x_i^{max}]`, when all the other components of
:math:`\\\\vect{x}` are fixed to the corresponding ones of the central point *CP*.
Then OpenTURNS draws the graph:
:math:`t\\\\in [x_i^{min}, x_i^{max}] \\\\mapsto f_k(CP_1, \\\\dots, CP_{i-1}, t, CP_{i+1} \\\\dots, CP_n)`.
- In the second usage:
Draws the iso-curves of the given *outputMarg* marginal :math:`f_k` as a
function of the given 2D *firstInputMarg* and *secondInputMarg* marginals
with respect to the variation of :math:`(x_i, x_j)` in the interval
:math:`[x_i^{min}, x_i^{max}] \\\\times [x_j^{min}, x_j^{max}]`, when all the
other components of :math:`\\\\vect{x}` are fixed to the corresponding ones of the
central point *CP*. Then OpenTURNS draws the graph:
:math:`(t,u) \\\\in [x_i^{min}, x_i^{max}] \\\\times [x_j^{min}, x_j^{max}] \\\\mapsto f_k(CP_1, \\\\dots, CP_{i-1}, t, CP_{i+1}, \\\\dots, CP_{j-1}, u, CP_{j+1} \\\\dots, CP_n)`.
- In the third usage:
The same as the first usage but only for function :math:`f: \\\\Rset \\\\rightarrow \\\\Rset`.
- In the fourth usage:
The same as the second usage but only for function :math:`f: \\\\Rset^2 \\\\rightarrow \\\\Rset`.
Examples
--------
>>> import openturns as ot
>>> from openturns.viewer import View
>>> f = ot.SymbolicFunction(['x'], ['sin(2*_pi*x)*exp(-x^2/2)'])
>>> graph = f.draw(-1.2, 1.2, 100)
>>> View(graph).show()"
// ---------------------------------------------------------------------
%feature("docstring") OT::EvaluationImplementation::isActualImplementation
"Accessor to the validity flag.
Returns
-------
is_impl : bool
Whether the implementation is valid."
|