/usr/include/openturns/swig/EfficientGlobalOptimization_doc.i is in libopenturns-dev 1.9-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 | %feature("docstring") OT::EfficientGlobalOptimization
"Efficient Global Optimization algorithm.
The EGO algorithm [Jones1998]_ is an adaptative optimization method based on
kriging.
An initial design of experiment is used to build a first metamodel.
At each iteration a new point that maximizes a criterion is chosen as
optimizer candidate.
The criterion uses a tradeoff between the metamodel value and the conditional
variance.
Then the new point is evaluated using the original model and the metamodel is
relearnt on the extended design of experiment.
Available constructors:
EfficientGlobalOptimization(*problem, krigingResult*)
Parameters
----------
problem : :class:`~openturns.OptimizationProblem`
The optimization problem to solve
optionally, a 2nd objective marginal can be used as noise
krigingResult : :class:`~openturns.KrigingResult`
The result of the meta-model on the first design of experiment
Notes
-----
Each point added to the metamodel design seeks to improve the current minimum.
We chose the point so as to maximize an improvement criterion based on the
metamodel.
.. math::
I(x_{new}) = max(f_{min} - Y_{new}, 0)
The default criteria is called EI (Expected Improvement) and aims at maximizing
the mean improvement:
.. math::
\\\\mathbb{E}\\\\left[I(x_{new})\\\\right] = \\\\mathbb{E}\\\\left[max(f_{min} - Y_{new}, 0)\\\\right]
This criterion is explicited using the kriging mean and variance:
.. math::
\\\\mathbb{E}\\\\left[I(x_{new})\\\\right] = (f_{min} - m_K(x_{new})) \\\\Phi\\\\left( \\\\frac{f_{min} - m_K(x_{new})}{s_K(x_{new})} \\\\right) + s_K(x_{new}) \\\\phi\\\\left( \\\\frac{f_{min} - m_K(x_{new})}{s_K(x_{new})} \\\\right)
An observation noise variance can be provided thanks to a 2nd objective marginal.
.. math:: Y_{obs} = Y(x) + \\\\sigma_{\\\\epsilon}(x) \\\\epsilon
In that case the AEI (Augmented Expected Improvement) formulation is used.
As we don't have access to the real minimum of the function anymore a quantile
of the kriging prediction is used, with the constant :math:`c`:
.. math:: u(x) = m_K(x) + c s_K(x)
This criterion is minimized over the design points:
.. math:: x_{min} = \\\\argmax_{x_i} (u(x_i))
The AEI criterion reads:
.. math::
AEI(x_{new}) = \\\\mathbb{E}\\\\left[max(m_K(x_{min}) - Y_{new}, 0)\\\\right] \\\\times \\\\left(1 - \\\\frac{\\\\sigma_{\\\\epsilon}(x_{new})}{\\\\sqrt{\\\\sigma_{\\\\epsilon}^2(x_{new})+s^2_K(x_{new})}} \\\\right)
with
.. math::
\\\\mathbb{E}\\\\left[max(m_K(x_{min}) - Y_{new}, 0)\\\\right] = (m_K(x_{min}) - m_K(x_{new})) \\\\Phi\\\\left( \\\\frac{m_K(x_{min}) - m_K(x_{new})}{s_K(x_{new})} \\\\right) + s_K(x_{new}) \\\\phi\\\\left( \\\\frac{m_K(x_{min}) - m_K(x_{new})}{s_K(x_{new})} \\\\right)
A less computationally expensive noise function can be provided through
:func:`setNoiseModel()` to evaluate :math:`\\\\sigma^2_{\\\\epsilon}(x)`
for the improvement criterion optimization, the objective being only used to
compute values and associated noise at design points.
By default the criteria is minimized using :class:`~openturns.MultiStart`
with starting points uniformly sampled in the optimization problem bounds,
see :func:`setMultiStartExperimentSize` and :func:`setMultiStartNumber`.
This behavior can be overridden by using another solver with :func:`setOptimizationAlgorithm`.
Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> dim = 4
>>> model = ot.SymbolicFunction(['x1', 'x2', 'x3', 'x4'],
... ['x1*x1+x2^3*x1+x3+x4'])
>>> bounds = ot.Interval([-5.0] * dim, [5.0] * dim)
>>> problem = ot.OptimizationProblem()
>>> problem.setObjective(model)
>>> problem.setBounds(bounds)
>>> experiment = ot.Composite([0.0] * dim, [1.0, 2.0, 4.0])
>>> inputSample = experiment.generate()
>>> outputSample = model(inputSample)
>>> covarianceModel = ot.SquaredExponential([2.0] * dim, [0.1])
>>> basis = ot.ConstantBasisFactory(dim).build()
>>> kriging = ot.KrigingAlgorithm(inputSample, outputSample, covarianceModel, basis)
>>> kriging.run()
>>> algo = ot.EfficientGlobalOptimization(problem, kriging.getResult())
>>> algo.setMaximumIterationNumber(2)
>>> algo.run()
>>> result = algo.getResult()"
// ---------------------------------------------------------------------
%feature("docstring") OT::EfficientGlobalOptimization::setOptimizationAlgorithm
"Expected improvement solver accessor.
Parameters
----------
solver : :class:`~openturns.OptimizationSolver`
The solver used to optimize the expected improvement"
// ---------------------------------------------------------------------
%feature("docstring") OT::EfficientGlobalOptimization::getOptimizationAlgorithm
"Expected improvement solver accessor.
Returns
-------
solver : :class:`~openturns.OptimizationSolver`
The solver used to optimize the expected improvement"
// ---------------------------------------------------------------------
%feature("docstring") OT::EfficientGlobalOptimization::setMultiStartExperimentSize
"Size of the design to draw starting points.
Parameters
----------
multiStartExperimentSize : int
The size of the Monte Carlo design from which to select the best starting
points.
The default number can be tweaked with the
`EfficientGlobalOptimization-DefaultMultiStartExperimentSize` key from
:class:`~openturns.ResourceMap`."
// ---------------------------------------------------------------------
%feature("docstring") OT::EfficientGlobalOptimization::getMultiStartExperimentSize
"Size of the design to draw starting points.
Returns
-------
multiStartExperimentSize : int
The size of the Monte Carlo design from which to select the best starting
points."
// ---------------------------------------------------------------------
%feature("docstring") OT::EfficientGlobalOptimization::setMultiStartNumber
"Number of starting points for the criterion optimization.
Parameters
----------
multiStartNumber : int
The number of starting points for the criterion optimization.
The default number can be tweaked with the
`EfficientGlobalOptimization-DefaultMultiStartNumber` key from
:class:`~openturns.ResourceMap`."
// ---------------------------------------------------------------------
%feature("docstring") OT::EfficientGlobalOptimization::getMultiStartNumber
"Number of starting points for the criterion optimization.
Returns
-------
multiStartNumber : int
The number of starting points for the criterion optimization."
// ---------------------------------------------------------------------
%feature("docstring") OT::EfficientGlobalOptimization::setParameterEstimationPeriod
"Parameter estimation period accessor.
Parameters
----------
period : int
The number of iterations between covariance parameters re-learn.
Default is 1 (each iteration). Can be set to 0 (never).
The default number can be tweaked with the
`EfficientGlobalOptimization-DefaultParameterEstimationPeriod` key from
:class:`~openturns.ResourceMap`."
// ---------------------------------------------------------------------
%feature("docstring") OT::EfficientGlobalOptimization::getParameterEstimationPeriod
"Parameter estimation period accessor.
Returns
-------
period : int
The number of iterations between covariance parameters re-learn.
Default is 1 (each iteration). Can be set to 0 (never)."
// ---------------------------------------------------------------------
%feature("docstring") OT::EfficientGlobalOptimization::setImprovementFactor
"Improvement criterion factor accessor.
Parameters
----------
a : float
Used to define a stopping criterion on the improvement criterion:
:math:`I_{max} < \\\\alpha |Y_{min}|`
with :math:`I_{max}` the current maximum of the improvement
and :math:`Y_{min}` the current optimum."
// ---------------------------------------------------------------------
%feature("docstring") OT::EfficientGlobalOptimization::getImprovementFactor
"Improvement criterion factor accessor.
Returns
-------
a : float
Used to define a stopping criterion on the improvement criterion:
:math:`I_{max} < \\\\alpha |Y_{min}|`
with :math:`I_{max}` the current maximum of the improvement
and :math:`Y_{min}` the current optimum."
// ---------------------------------------------------------------------
%feature("docstring") OT::EfficientGlobalOptimization::setCorrelationLengthFactor
"Correlation length stopping criterion factor accessor.
Parameters
----------
b : float
Used to define a stopping criterion on the minimum correlation length:
:math:`\\\\theta_i < \\\\frac{\\\\Delta_i^{min}}{b}`
with :math:`\\\\Delta^{min}` the minimum distance between design points."
// ---------------------------------------------------------------------
%feature("docstring") OT::EfficientGlobalOptimization::getCorrelationLengthFactor
"Correlation length stopping criterion factor accessor.
Returns
-------
b : float
Used to define a stopping criterion on the minimum correlation length:
:math:`\\\\theta_i < \\\\frac{\\\\Delta_i^{min}}{b}`
with :math:`\\\\Delta^{min}` the minimum distance between design points."
// ---------------------------------------------------------------------
%feature("docstring") OT::EfficientGlobalOptimization::setAIETradeoff
"AEI tradeoff constant accessor.
Parameters
----------
c : float
Used to define a quantile of the kriging prediction at the design points.
:math:`u(x)=m_K(x)+c*s_K(x)`"
// ---------------------------------------------------------------------
%feature("docstring") OT::EfficientGlobalOptimization::getAIETradeoff
"AEI tradeoff constant accessor.
Returns
-------
c : float
Used to define a quantile of the kriging prediction at the design points.
:math:`u(x)=m_K(x)+c*s_K(x)`"
// ---------------------------------------------------------------------
%feature("docstring") OT::EfficientGlobalOptimization::getExpectedImprovement
"Expected improvement values.
Returns
-------
ei : :class:`~openturns.Sample`
The expected improvement optimal values."
// ---------------------------------------------------------------------
%feature("docstring") OT::EfficientGlobalOptimization::setNoiseModel
"Improvement noise model accessor.
Parameters
----------
noiseVariance : :class:`~openturns.Function`
The noise variance :math:`\\\\sigma^2_{\\\\epsilon}(x)` used for the AEI
criterion optimization only.
Of same input dimension than the objective and 1-d output."
// ---------------------------------------------------------------------
%feature("docstring") OT::EfficientGlobalOptimization::getNoiseModel
"Improvement noise model accessor.
Returns
-------
noiseVariance : :class:`~openturns.Function`
The noise variance :math:`\\\\sigma^2_{\\\\epsilon}(x)` used for the AEI
criterion optimization only.
Of same input dimension than the objective and 1-d output."
|