This file is indexed.

/usr/include/openturns/swig/DistFunc_doc.i is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
%feature("docstring") OT::DistFunc::pNormal
"CDF of an unit-variance centered Normal distribution.

Parameters
----------
x : float
    Location
tail : bool, default=False
    Tail flag

Returns
-------
cdf : float

Examples
--------
>>> import openturns as ot
>>> cdf = ot.DistFunc.pNormal(0.9)"

// ---------------------------------------------------------------------

%feature("docstring") OT::DistFunc::qNormal
"Quantile of an unit-variance centered Normal distribution.

Parameters
----------
prob : float

Returns
-------
q : float

Examples
--------
>>> import openturns as ot
>>> q = ot.DistFunc.qNormal(0.95)"

// ---------------------------------------------------------------------

%feature("docstring") OT::DistFunc::rNormal
"Realization of an unit-variance centered Normal distribution.

Returns
-------
realization : float

Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> r = ot.DistFunc.rNormal()"

// ---------------------------------------------------------------------

%feature("docstring") OT::DistFunc::kFactorPooled
"Exact margin factor for bilateral covering interval of pooled Normal populations.

Parameters
----------
n : int
    The size of the population

m : int
    The size of the pool

p : float :math:`0<p<1`
    The probability level of the covering interval

alpha : float :math:`0<\\\\alpha<1`
    The confidence level of the covering interval

Returns
-------
k : float
    The margin factor

Notes
-----
This method allows to compute the *exact* margin factor :math:`k` of a
pool of :math:`m` Normal populations of size :math:`n` with unknown
means :math:`\\\\mu_i` and unknown common variance :math:`\\\\sigma^2`.
Let :math:`m_i=\\\\dfrac{1}{n}\\\\sum_{j=1}^nX_{ij}` be the empirical mean
of the ith population :math:`(X_{i1},\\\\dots,X_{in})` and
:math:`\\\\sigma^2_{mn}=\\\\dfrac{}{}\\\\sum_{i=1}^m\\\\sum_{j=1}^n(X_{ij}-m_i)^2`
the empirical *pooled* variance. The covering factor :math:`k` is such
that the intervals :math:`[m_i-k\\\\sigma_{mn},m_i+k\\\\sigma_{mn}]` satisfy:

.. math::
    \\\\Prob{\\\\Prob{X_i\\\\in[m_i-k\\\\sigma_{mn},m_i+k\\\\sigma_{mn}]}\\\\geq p}=\\\\alpha

for :math:`i\\\\in\\\\{1,\\\\dots,m\\\\}`. It reduces to find :math:`k` such that:

.. math::
    \\\\int_{\\\\Rset}F(x,k;\\\\nu_{m,n},p)\\\\phi_{0,1/\\\\sqrt{n}}(x)\\\\,\\\\di x = \\\\alpha

where :math:`phi_{0,1/\\\\sqrt{n}}` is the density function of the normal
distribution with a mean equals to 0 and a variance equals to
:math:`1/n`, :math:`\\\\nu_{m,n}=m(n-1)` and :math:`F(x,k;\\\\nu_{m,n},p)`
the function defined by:

.. math::
    F(x,k;\\\\nu_{m,n},p)=\\\\bar{F}_{\\\\chi^2_{\\\\nu_{m,n}}}(\\\\nu_{m,n} R^2(x;p)/k^2)

where :math:`\\\\bar{F}_{\\\\chi^2_{\\\\nu_{m,n}}}` is the complementary distribution
function of a chi-square distribution with :math:`\\\\nu_{m,n}` degrees
of freedom and :math:`R(x;p)` the solution of:

.. math::
    \\\\Phi(x + R) - \\\\Phi(x - R) = p
    
Examples
--------
>>> import openturns as ot
>>> k = ot.DistFunc.kFactorPooled(5, 3, 0.95, 0.9)"

// ---------------------------------------------------------------------

%feature("docstring") OT::DistFunc::kFactor
"Exact margin factor for bilateral covering interval of a Normal population.

Parameters
----------
n : int
    The size of the population

p : float :math:`0<p<1`
    The probability level of the covering interval

alpha : float :math:`0<\\\\alpha<1`
    The confidence level of the covering interval

Returns
-------
k : float
    The margin factor

Notes
-----
This method allows to compute the *exact* margin factor :math:`k` of a
Normal population of size :math:`n` with unknown
means :math:`\\\\mu_i` and unknown common variance :math:`\\\\sigma^2`. It
is equivalent to the pooled version with :math:`m=1`.

Examples
--------
>>> import openturns as ot
>>> k = ot.DistFunc.kFactor(5, 0.95, 0.9)"