/usr/include/openturns/swig/DirectionalSampling_doc.i is in libopenturns-dev 1.9-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 | %feature("docstring") OT::DirectionalSampling
"Directional simulation.
Available constructors:
DirectionalSampling(*event=ot.Event()*)
DirectionalSampling(*event, rootStrategy, samplingStrategy*)
Parameters
----------
event : :class:`~openturns.Event`
Event we are computing the probability of.
rootStrategy : :class:`~openturns.RootStrategy`
Strategy adopted to evaluate the intersections of each direction with the
limit state function and take into account the contribution of the
direction to the event probability. By default,
*rootStrategy = ot.RootStrategy(ot.SafeAndSlow())*.
samplingStrategy : :class:`~openturns.SamplingStrategy`
Strategy adopted to sample directions. By default,
*samplingStrategy=ot.SamplingStrategy(ot.RandomDirection())*.
Notes
-----
Using the probability distribution of a random vector :math:`\\\\vect{X}`, we seek
to evaluate the following probability:
.. math::
P_f = \\\\int_{\\\\Rset^{n_X}} \\\\mathbf{1}_{\\\\{g(\\\\ux,\\\\underline{d}) \\\\leq 0 \\\\}}f_{\\\\uX}(\\\\ux)\\\\di{\\\\ux}
= \\\\Prob{g\\\\left( \\\\vect{X},\\\\vect{d} \\\\right) \\\\leq 0}
Here, :math:`\\\\vect{X}` is a random vector, :math:`\\\\vect{d}` a deterministic
vector, :math:`g(\\\\vect{X},\\\\vect{d})` the function known as *limit state function*
which enables the definition of the event
:math:`\\\\cD_f = \\\\{\\\\vect{X} \\\\in \\\\Rset^n \\\\, | \\\\, g(\\\\vect{X},\\\\vect{d}) \\\\le 0\\\\}`.
:math:`\\\\mathbf{1}_{ \\\\left\\\\{ g(\\\\vect{x}_i,\\\\vect{d}) \\\\leq 0 \\\\right\\\\} }`
describes the indicator function equal to 1 if
:math:`g(\\\\vect{x}_i,\\\\vect{d}) \\\\leq 0` and equal to 0 otherwise.
The directional simulation method is an accelerated sampling method. It implies
a preliminary iso-probabilistic transformation, as for :class:`~openturns.FORM`
and :class:`~openturns.SORM` methods; however, it remains based on sampling and
is thus not an approximation method.
In the transformed space, the (transformed) uncertain variables :math:`\\\\vect{U}`
are independent standard gaussian variables (mean equal to zero and standard
deviation equal to 1).
Roughly speaking, each simulation of the directional simulation algorithm is
made of three steps. For the :math:`i^\\\\textrm{th}` iteration, these steps are
the following:
- Let :math:`\\\\cS = \\\\big\\\\{ \\\\vect{u} \\\\big| ||\\\\vect{u}|| = 1 \\\\big\\\\}`. A point
:math:`P_i` is drawn randomly on :math:`\\\\cS` according to an uniform
distribution.
- In the direction starting from the origin and passing through :math:`P_i`,
solutions of the equation :math:`g(\\\\vect{X},\\\\vect{d}) = 0` (i.e. limits of
:math:`\\\\cD_f`) are searched. The set of values of :math:`\\\\vect{u}` that
belong to :math:`\\\\cD_f` is deduced for these solutions: it is a subset
:math:`I_i \\\\subset \\\\Rset`.
- Then, one calculates the probability :math:`q_i = \\\\Prob{ ||\\\\vect{U}|| \\\\in I_i }`.
By property of independent standard variable, :math:`||\\\\vect{U}||^2` is a
random variable distributed according to a chi-square distribution, which
makes the computation effortless.
Finally, the estimate of the probability :math:`P_f` after :math:`N` simulations
is the following:
.. math::
\\\\widehat{P}_{f,DS} = \\\\frac{1}{N} \\\\sum_{i=1}^N q_i
Examples
--------
>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> myFunction = ot.SymbolicFunction(['E', 'F', 'L', 'I'], ['-F*L^3/(3*E*I)'])
>>> myDistribution = ot.Normal([50.0, 1.0, 10.0, 5.0], [1.0]*4, ot.IdentityMatrix(4))
>>> # We create a 'usual' RandomVector from the Distribution
>>> vect = ot.RandomVector(myDistribution)
>>> # We create a composite random vector
>>> output = ot.RandomVector(myFunction, vect)
>>> # We create an Event from this RandomVector
>>> myEvent = ot.Event(output, ot.Less(), -3.0)
>>> # We create a DirectionalSampling algorithm
>>> myAlgo = ot.DirectionalSampling(myEvent, ot.MediumSafe(), ot.OrthogonalDirection())
>>> myAlgo.setMaximumOuterSampling(150)
>>> myAlgo.setBlockSize(4)
>>> myAlgo.setMaximumCoefficientOfVariation(0.1)
>>> # Perform the simulation
>>> myAlgo.run()
>>> print('Probability estimate=%.6f' % myAlgo.getResult().getProbabilityEstimate())
Probability estimate=0.169716"
// ---------------------------------------------------------------------
%feature("docstring") OT::DirectionalSampling::getRootStrategy
"Get the root strategy.
Returns
-------
strategy : :class:`~openturns.RootStrategy`
Root strategy adopted."
// ---------------------------------------------------------------------
%feature("docstring") OT::DirectionalSampling::setRootStrategy
"Set the root strategy.
Parameters
----------
strategy : :class:`~openturns.RootStrategy`
Root strategy adopted."
// ---------------------------------------------------------------------
%feature("docstring") OT::DirectionalSampling::getSamplingStrategy
"Get the direction sampling strategy.
Returns
-------
strategy : :class:`~openturns.SamplingStrategy`
Direction sampling strategy adopted."
// ---------------------------------------------------------------------
%feature("docstring") OT::DirectionalSampling::setSamplingStrategy
"Set the direction sampling strategy.
Parameters
----------
strategy : :class:`~openturns.SamplingStrategy`
Direction sampling strategy adopted."
|