This file is indexed.

/usr/include/openturns/swig/DiracCovarianceModel_doc.i is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
%feature("docstring") OT::DiracCovarianceModel
"Dirac covariance function.

Available constructors:
    DiracCovarianceModel(*spatialDim=1*)

    DiracCovarianceModel(*spatialDim, amplitude*)

    DiracCovarianceModel(*spatialDim, amplitude, spatialCorrelation*)

    DiracCovarianceModel(*spatialDim, spatialCovariance*)

Parameters
----------
spatialDim : int
    Spatial dimension :math:`n`.
    By default, equal to 1.
amplitude : sequence of positive floats
    Amplitude of the process :math:`\\\\vect{\\\\sigma}\\\\in \\\\Rset^d`.
    Its size is the dimension :math:`d` of the process.
    By default, equal to :math:`[1]`.
spatialCorrelation : :class:`~openturns.CorrelationMatrix`
    Correlation matrix :math:`\\\\mat{R} \\\\in \\\\cS^+_d([-1, 1])`.
    By default, Identity matrix.
spatialCovariance : :class:`~openturns.CovarianceMatrix`
    Covariance matrix :math:`\\\\mat{C}^{stat} \\\\in \\\\cS_d^+(\\\\Rset)`.
    By default, Identity matrix.

Notes
-----
The *Dirac* covariance function is a stationary covariance function whith dimension :math:`d \\\\geq 1`.

We consider the stochastic process :math:`X: \\\\Omega \\\\times\\\\cD \\\\mapsto \\\\Rset^d`, where :math:`\\\\omega \\\\in \\\\Omega` is an event, :math:`\\\\cD` is a domain of :math:`\\\\Rset^n`.

The  *Dirac* covariance function is defined by:

.. math::
    
    C(\\\\vect{s}, \\\\vect{t}) =  1_{\\\\{\\\\vect{s}=\\\\vect{t}\\\\}} \\\\, \\\\mbox{Diag}(\\\\vect{\\\\sigma}) \\\\, \\\\mat{R}\\\\,  \\\\mbox{Diag}(\\\\vect{\\\\sigma}), \\\\quad \\\\forall (\\\\vect{s}, \\\\vect{t}) \\\\in \\\\cD

where :math:`\\\\mat{R} \\\\in \\\\cS_d^+([-1,1])` is the spatial correlation matrix. We can define the spatial covariance matrix :math:`\\\\mat{C}^{stat}` as:

.. math::
    
    \\\\mat{C}^{stat} = \\\\mbox{Diag}(\\\\vect{\\\\sigma}) \\\\, mat{R}\\\\,  \\\\mbox{Diag}(\\\\vect{\\\\sigma})

The correlation function :math:`\\\\rho` writes:

.. math::

    \\\\rho(\\\\vect{s}, \\\\vect{t}) = 1_{\\\\{\\\\vect{s}=\\\\vect{t}\\\\}}


See Also
--------
CovarianceModel

Examples
--------
Create a standard Dirac covariance function:


>>> import openturns as ot
>>> covModel = ot.DiracCovarianceModel(2)
>>> t = [0.1, 0.3]
>>> s = [0.1, 0.3]
>>> print(covModel(s, t))
[[ 1 ]]
>>> tau = [0.1, 0.3]
>>> print(covModel(tau))
[[ 0 ]]

Create a  Dirac covariance function specifying the amplitude vector:

>>> covModel2 = ot.DiracCovarianceModel(2, [1.5, 2.5])

Create a  Dirac covariance function specifying the amplitude vector and the correlation matrix:

>>> corrMat = ot.CorrelationMatrix(2)
>>> corrMat[1,0] = 0.1
>>> covModel3 =  ot.DiracCovarianceModel(2, [1.5, 2.5], corrMat)"