/usr/include/openturns/swig/DickeyFullerTest_doc.i is in libopenturns-dev 1.9-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 | %feature("docstring") OT::DickeyFullerTest
"The Dickey-Fuller stationarity test.
Notes
-----
The Dickey-Fuller test checks the stationarity of a scalar time series using one time series. It assumes that the :math:`X: \\\\Omega \\\\times \\\\cD \\\\rightarrow \\\\Rset` process with :math:`\\\\cD \\\\in \\\\Rset`, discretized on the time grid :math:`(t_0, \\\\dots, t_{N-1})` writes:
.. math::
:label: DFmodel
X_t = a + bt + \\\\rho X_{t-1} + \\\\varepsilon_{t}
where :math:`\\\\rho > 0` and where :math:`a` or :math:`b` or both :math:`(a,b)` can be assumed to be equal to 0.
The Dickey-Fuller test checks whether the random perturbation at time :math:`t` vanishes with time.
When :math:`a \\\\neq 0` and :math:`b=0`, the model :eq:`DFmodel` is said to have a *drift*. When :math:`a = 0` and :math:`b \\\\neq 0`, the model :eq:`DFmodel` is said to have a *linear trend*.
In the model :eq:`DFmodel`, the only way to have stochastic non stationarity is to have :math:`\\\\rho = 1` (if :math:`\\\\rho > 1`, then the process diverges with time which is readily seen in the data). In the general case, the Dickey-Fuller test is a unit root test to detect whether :math:`\\\\rho=1` against :math:`\\\\rho < 1`:
The test statistics and its limit distribution depend on the a priori knowledge we have on :math:`a` and :math:`b`. In case of absence of a priori knowledge on the structure of the model, several authors have proposed a global strategy to cover all the subcases of the model :eq:`DFmodel`, depending on the possible values on :math:`a` and :math:`b`.
The strategy implemented in OpenTURNS, is recommended by Enders (*Applied Econometric Times Series*, Enders, W., second edition, John Wiley \\\\& sons editions, 2004.).
We note :math:`(X_1, \\\\hdots, X_n)` the data, by :math:`W(r)` the Wiener process, and :math:`W^{a}(r) = W(r) - \\\\int_{0}^{1} W(r)\\\\di{r}`, :math:`W^{b}(r) = W^{a}(r) - 12 \\\\left(r - \\\\frac{1}{2} \\\\right) \\\\int_{0}^{1} \\\\left(s - \\\\frac{1}{2} \\\\right) W(s)\\\\di{s}`.
**1.** We assume the model :eq:`Model1`:
.. math::
:label: Model1
\\\\boldsymbol{X_t = a + bt + \\\\rho X_{t-1} + \\\\varepsilon_{t}}
The coefficients :math:`(a,b,\\\\rho)` are estimated by :math:`(\\\\Hat{a}_n, \\\\Hat{b}_n, \\\\Hat{\\\\rho}_n)` using ordinary least-squares fitting, which leads to:
.. math::
:label: Model1Estim
\\\\underbrace{\\\\left(
\\\\begin{array}{lll}
\\\\displaystyle n-1 &\\\\sum_{i=1}^n t_{i} &\\\\sum_{i=2}^n y_{i-1}\\\\\\\\
\\\\displaystyle \\\\sum_{i=1}^n t_{i} &\\\\sum_{i=1}^n t_{i}^2 &\\\\sum_{i=2}^n t_{i} y_{i-1}\\\\\\\\
\\\\displaystyle \\\\sum_{i=2}^n y_{i-1}& \\\\sum_{i=2}^n t_{i}y_{i-1} &\\\\sum_{i=2}^n y_{i-1}^2
\\\\end{array}
\\\\right)}_{\\\\mat{M}}
\\\\left(
\\\\begin{array}{c}
\\\\hat{a}_n\\\\\\\\
\\\\hat{b}_n\\\\\\\\
\\\\hat{\\\\rho}_n
\\\\end{array}
\\\\right)=
\\\\left(
\\\\begin{array}{l}
\\\\displaystyle \\\\sum_{i=1}^n y_{i} \\\\\\\\
\\\\displaystyle \\\\sum_{i=1}^n t_{i} y_{i}\\\\\\\\
\\\\displaystyle \\\\sum_{i=2}^n y_{i-1} y_{i}
\\\\end{array}
\\\\right)
We first test:
.. math::
:label: TestModel1
\\\\left\\\\{
\\\\begin{array}{lr}
\\\\cH_0: & \\\\rho = 1 \\\\\\\\
\\\\cH_1: & \\\\rho < 1
\\\\end{array}
\\\\right.
thanks to the Student statistics:
.. math::
t_{\\\\rho=1} = \\\\frac{\\\\rho_n-1}{\\\\hat{\\\\sigma}_{\\\\rho_n}}
where :math:`\\\\sigma_{\\\\rho_n}` is the least square estimate of the standard deviation of :math:`\\\\Hat{\\\\rho}_n`, given by:
.. math::
\\\\sigma_{\\\\rho_n}=\\\\mat{M}^{-1}_{33}\\\\sqrt{\\\\frac{1}{n-1}\\\\sum_{i=2}^n\\\\left(y_{i}-(\\\\hat{a}_n+\\\\hat{b}_nt_i+\\\\hat{\\\\rho}_ny_{i-1})\\\\right)^2}
which converges in distribution to the Dickey-Fuller distribution associated to the model with drift and trend:
.. math::
t_{\\\\rho = 1} \\\\stackrel{\\\\mathcal{L}}{\\\\longrightarrow} \\\\frac{\\\\int_{0}^{1}W^{b}(r) \\\\di{W(r)}}{\\\\int_{1}^{0} W^{b}(r)^2 \\\\di{r}}
The null hypothesis :math:`\\\\cH_0` from :eq:`TestModel1` is accepted when :math:`t_{\\\\rho=1} > C_{\\\\alpha}` where :math:`C_{\\\\alpha}` is the test threshold of level :math:`\\\\alpha`.
The quantiles of the Dickey-Fuller statistics for the model with drift and linear trend are:
.. math::
\\\\left\\\\{
\\\\begin{array}{ll}
\\\\alpha = 0.01, & C_{\\\\alpha} = -3.96 \\\\\\\\
\\\\alpha = 0.05, & C_{\\\\alpha} = -3.41 \\\\\\\\
\\\\alpha = 0.10, & C_{\\\\alpha} = -3.13
\\\\end{array}
\\\\right.
**1.1. Case 1:** The null hypothesis :math:`\\\\cH_0` from :eq:`TestModel1` is rejected
We test whether :math:`b=0`:
.. math::
:label: TestSousModele1_1
\\\\left\\\\{
\\\\begin{array}{lr}
\\\\cH_0: & b = 0 \\\\\\\\
\\\\cH_1: & b \\\\neq 0
\\\\end{array}
\\\\right.
where the statistics :math:`t_n = \\\\frac{|\\\\hat{b}_n|}{\\\\sigma_{b_n}}` converges in distribution to the Student distribution :class:`~openturns.Student` with :math:`\\\\nu=n-4`, where :math:`\\\\sigma_{b_n}` is the least square estimate of the standard deviation of :math:`\\\\Hat{b}_n`, given by:
.. math::
\\\\sigma_{b_n}=\\\\mat{M}^{-1}_{22}\\\\sqrt{\\\\frac{1}{n-1}\\\\sum_{i=2}^n\\\\left(y_{i}-(\\\\hat{a}_n+\\\\hat{b}_nt_i+\\\\hat{\\\\rho}_ny_{i-1})\\\\right)^2}
The decision to be taken is:
- If :math:`\\\\cH_0` from :eq:`TestSousModele1_1` is rejected, then the model 1 :eq:`Model1` is confirmed. And the test :eq:`TestModel1` proved that the unit root is rejected : :math:`\\\\rho < 1`. We then conclude that the final model is : :math:`\\\\boldsymbol{X_t = a + bt + \\\\rho X_{t-1} + \\\\varepsilon_{t}}` whith :math:`\\\\boldsymbol{\\\\rho < 1}` which is a **trend stationary model**.
- If :math:`\\\\cH_0` from :eq:`TestSousModele1_1` is accepted, then the model 1 :eq:`Model1` is not confirmed, since the trend presence is rejected and the test :eq:`TestModel1` is not conclusive (since based on a wrong model). **We then have to test the second model** :eq:`Model2`.
**1.2. Case 2:** The null hypothesis :math:`\\\\cH_0` from :eq:`TestModel1` is accepted
We test whether :math:`(\\\\rho, b) = (1,0)`:
.. math::
:label: TestSousModele1_2
\\\\left\\\\{
\\\\begin{array}{lr}
\\\\cH_0: & (\\\\rho, b) = (1,0) \\\\\\\\
\\\\cH_1: & (\\\\rho, b) \\\\neq (1,0)
\\\\end{array}
\\\\right.
with the Fisher statistics:
.. math::
\\\\displaystyle \\\\hat{F}_1 = \\\\frac{(S_{1,0} - S_{1,b})/2}{S_{1,b}/(n-3)}
where :math:`S_{1,0}=\\\\sum_{i=2}^n\\\\left(y_i-(\\\\hat{a}_n+y_{i-1})\\\\right)^2` is the sum of the square errors of the model 1 :eq:`Model1` assuming :math:`\\\\cH_0` from :eq:`TestSousModele1_2` and :math:`S_{1,b}=\\\\sum_{i=2}^n\\\\left(y_i-(\\\\hat{a}_n+\\\\hat{b}_nt_i+\\\\hat{\\\\rho}_ny_{i-1})\\\\right)^2` is the same sum when we make no assumption on :math:`\\\\rho` and :math:`b`.
The statistics :math:`\\\\hat{F}_1` converges in distribution to the Fisher-Snedecor distribution :class:`~openturns.FisherSnedecor` with :math:`d_1=2, d_2=n-3`. The null hypothesis :math:`\\\\cH_0` from :eq:`TestModel1` is accepted when :math:`\\\\hat{F}_1 < \\\\Phi_{\\\\alpha}` where :math:`\\\\Phi_{\\\\alpha}` is the test threshold of level :math:`\\\\alpha`.
The decision to be taken is:
- If :math:`\\\\cH_0` from :eq:`TestSousModele1_2` is rejected, then the model 1 :eq:`Model1` is confirmed since the presence of linear trend is confirmed. And the test :eq:`TestModel1` proved that the unit root is accepted: :math:`\\\\rho = 1`. We then conclude that the model is: :math:`\\\\boldsymbol{X_t = a + bt + X_{t-1} + \\\\varepsilon_{t}}` which is a **non stationary model**.
- If :math:`\\\\cH_0` from :eq:`TestSousModele1_2` is accepted, then the model 1 :eq:`Model1` is not confirmed, since the presence of the linear trend is rejected and the test :eq:`TestModel1` is not conclusive (since based on a wrong model). **We then have to test the second model** :eq:`Model2`.
**2.** We assume the model :eq:`Model2`:
.. math::
:label: Model2
\\\\boldsymbol{X_t = a + \\\\rho X_{t-1} + \\\\varepsilon_{t}}
The coefficients :math:`(a,\\\\rho)` are estimated as follows:
.. math::
:label: Model2Estim
\\\\underbrace{\\\\left(\\\\begin{array}{lll}
\\\\displaystyle n-1 &\\\\sum_{i=2}^n y_{i-1}\\\\\\\\
\\\\displaystyle \\\\sum_{i=2}^n y_{i-1} &\\\\sum_{i=2}^n y_{i-1}^2
\\\\end{array}
\\\\right)}_{\\\\mat{N}}
\\\\left(
\\\\begin{array}{c}
\\\\hat{a}_n\\\\\\\\
\\\\hat{\\\\rho}_n
\\\\end{array}
\\\\right)=
\\\\left(
\\\\begin{array}{l}
\\\\displaystyle \\\\sum_{i=1}^n y_{i} \\\\\\\\
\\\\displaystyle \\\\sum_{i=2}^n y_{i-1} y_{i}
\\\\end{array}
\\\\right)
We first test:
.. math::
:label: TestModel2
\\\\left\\\\{
\\\\begin{array}{lr}
\\\\mathcal{H}_0: & \\\\rho = 1 \\\\\\\\
\\\\mathcal{H}_1: & \\\\rho < 1
\\\\end{array}
\\\\right.
thanks to the Student statistics:
.. math::
t_{\\\\rho=1} = \\\\frac{\\\\rho_n-1}{\\\\sigma_{\\\\rho_n}}
where :math:`\\\\sigma_{\\\\rho_n}` is the least square estimate of the standard deviation of :math:`\\\\Hat{\\\\rho}_n`, given by:
.. math::
\\\\sigma_{\\\\rho_n}=\\\\mat{N}^{-1}_{22}\\\\sqrt{\\\\frac{1}{n-1}\\\\sum_{i=2}^n\\\\left(y_{i}-(\\\\hat{a}_n+\\\\hat{\\\\rho}_ny_{i-1})\\\\right)^2}
which converges in distribution to the Dickey-Fuller distribution associated to the model with drift and no linear trend:
.. math::
t_{\\\\rho = 1} \\\\stackrel{\\\\mathcal{L}}{\\\\longrightarrow} \\\\frac{\\\\int_{0}^{1}W^{a}(r) \\\\di{W(r)}}{\\\\int_{1}^{0} W^{a}(r)^2 \\\\di{r}}
The null hypothesis :math:`\\\\cH_0` from :eq:`TestModel2` is accepted when :math:`t_{\\\\rho=1} > C_{\\\\alpha}` where :math:`C_{\\\\alpha}` is the test threshold of level :math:`\\\\alpha`.
The quantiles of the Dickey-Fuller statistics for the model with drift are:
.. math::
\\\\left\\\\{
\\\\begin{array}{ll}
\\\\alpha = 0.01, & C_{\\\\alpha} = -3.43 \\\\\\\\
\\\\alpha = 0.05, & C_{\\\\alpha} = -2.86 \\\\\\\\
\\\\alpha = 0.10, & C_{\\\\alpha} = -2.57
\\\\end{array}
\\\\right.
**2.1. Case 1:** The null hypothesis :math:`\\\\cH_0` from :eq:`TestModel2` is rejected
We test whether :math:`a=0`:
.. math::
:label: TestSousModele2_1
\\\\left\\\\{
\\\\begin{array}{lr}
\\\\mathcal{H}_0: & a = 0 \\\\\\\\
\\\\mathcal{H}_1: & a \\\\neq 0
\\\\end{array}
\\\\right.
where the statistics :math:`t_n = \\\\frac{|\\\\hat{a}_n|}{\\\\sigma_{a_n}}` converges in distribution to the Student distribution :class:`~openturns.Student` with :math:`\\\\nu=n-3`, where :math:`\\\\sigma_{a_n}` is the least square estimate of the standard deviation of :math:`\\\\Hat{a}_n`, given by:
.. math::
\\\\sigma_{a_n}=\\\\mat{N}^{-1}_{11}\\\\sqrt{\\\\frac{1}{n-1}\\\\sum_{i=2}^n\\\\left(y_{i}-(\\\\hat{a}_n+\\\\hat{\\\\rho}_ny_{i-1})\\\\right)^2}
The decision to be taken is:
- If :math:`\\\\cH_0` from :eq:`TestSousModele2_1` is rejected, then the model 2 :eq:`Model2` is confirmed. And the test :eq:`TestModel2` proved that the unit root is rejected: :math:`\\\\rho < 1`. We then conclude that the final model is: :math:`\\\\boldsymbol{X_t = a + \\\\rho X_{t-1} + \\\\varepsilon_{t}}` whith :math:`\\\\boldsymbol{\\\\rho < 1}` which is a **stationary model**.
- If :math:`\\\\cH_0` from :eq:`TestSousModele2_1` is accepted, then the model 2 :eq:`Model2` is not confirmed, since the drift presence is rejected and the test :eq:`TestModel1` is not conclusive (since based on a wrong model). **We then have to test the third model** :eq:`Model3`.
**2.2. Case 2:** The null hypothesis :math:`\\\\cH_0` from :eq:`TestModel2` is accepted
We test whether :math:`(\\\\rho, a) = (1,0)`:
.. math::
:label: TestSousModele2_2
\\\\left\\\\{
\\\\begin{array}{lr}
\\\\mathcal{H}_0: & (\\\\rho, a) = (1,0) \\\\\\\\
\\\\mathcal{H}_1: & (\\\\rho, a) \\\\neq (1,0)
\\\\end{array}
\\\\right.
with a Fisher test. The statistics is:
.. math::
\\\\displaystyle \\\\hat{F}_2 = \\\\frac{(SCR_{2,c} - SCR_{2})/2}{SCR_{2}/(n-2)}
where :math:`SCR_{2,c}` is the sum of the square errors of the model 2 :eq:`Model2` assuming :math:`\\\\cH_0` from :eq:`TestSousModele2_2` and :math:`SCR_{2}` is the same sum when we make no assumption on :math:`\\\\rho` and :math:`a`.
The statistics :math:`\\\\hat{F}_2` converges in distribution to the Fisher-Snedecor distribution :class:`~openturns.FisherSnedecor` with :math:`d_1=2, d_2=n-2`. The null hypothesis :math:`\\\\cH_0` from :eq:`TestModel1` is accepted if when :math:`\\\\hat{F}_2 < \\\\Phi_{\\\\alpha}` where :math:`\\\\Phi_{\\\\alpha}` is the test threshold of level :math:`\\\\alpha`.
The decision to be taken is:
- If :math:`\\\\cH_0` from :eq:`TestSousModele2_2` is rejected, then the model 2 :eq:`Model2` is confirmed since the presence of the drift is confirmed. And the test :eq:`TestModel2` proved that the unit root is accepted: :math:`\\\\rho =1`. We then conclude that the model is: :math:`\\\\boldsymbol{X_t = a + X_{t-1} + \\\\varepsilon_{t}}` which is a **non stationary model**.
- If :math:`\\\\cH_0` from :eq:`TestSousModele2_2` is accepted, then the model 2 :eq:`Model2` is not confirmed, since the drift presence is rejected and the test :eq:`TestModel2` is not conclusive (since based on a wrong model). **We then have to test the third model** :eq:`Model3`.
**3.** We assume the model :eq:`Model3`:
.. math::
:label: Model3
\\\\boldsymbol{X_t = \\\\rho X_{t-1} + \\\\varepsilon_{t}}
The coefficients :math:`\\\\rho` are estimated as follows:
.. math::
:label: Model3Estim
\\\\hat{\\\\rho}_n=\\\\frac{\\\\sum_{i=2}^ny_{i-1}y_i}{\\\\sum_{i=2}^ny_{i-1}^2}
We first test:
.. math::
:label: TestModel3
\\\\left\\\\{
\\\\begin{array}{lr}
\\\\mathcal{H}_0: & \\\\rho = 1 \\\\\\\\
\\\\mathcal{H}_1: & \\\\rho < 1
\\\\end{array}
\\\\right.
thanks to the Student statistics:
.. math::
t_{\\\\rho=1} = \\\\frac{\\\\hat{\\\\rho}_n-1}{\\\\sigma_{\\\\rho_n}}
where :math:`\\\\sigma_{\\\\rho_n}` is the least square estimate of the standard deviation of :math:`\\\\Hat{\\\\rho}_n`, given by:
.. math::
\\\\sigma_{\\\\rho_n}=\\\\sqrt{\\\\frac{1}{n-1}\\\\sum_{i=2}^n\\\\left(y_{i}-\\\\hat{\\\\rho}_ny_{i-1}\\\\right)^2}/\\\\sqrt{\\\\sum_{i=2}^ny_{i-1}^2}
which converges in distribution to the Dickey-Fuller distribution associated to the random walk model:
.. math::
t_{\\\\rho = 1} \\\\stackrel{\\\\mathcal{L}}{\\\\longrightarrow} \\\\frac{\\\\int_{0}^{1}W(r) \\\\di{W(r)}}{\\\\int_{1}^{0} W(r)^2 \\\\di{r}}
The null hypothesis :math:`\\\\cH_0` from :eq:`TestModel3` is accepted when :math:`t_{\\\\rho=1} > C_{\\\\alpha}` where :math:`C_{\\\\alpha}` is the test threshold of level :math:`\\\\alpha`.
The quantiles of the Dickey-Fuller statistics for the random walk model are:
.. math::
\\\\left\\\\{
\\\\begin{array}{ll}
\\\\alpha = 0.01, & C_{\\\\alpha} = -2.57 \\\\\\\\
\\\\alpha = 0.05, & C_{\\\\alpha} = -1.94 \\\\\\\\
\\\\alpha = 0.10, & C_{\\\\alpha} = -1.62
\\\\end{array}
\\\\right.
The decision to be taken is:
- If :math:`\\\\cH_0` from :eq:`TestModel3` is rejected, we then conclude that the model is : :math:`\\\\boldsymbol{X_t = \\\\rho X_{t-1} + \\\\varepsilon_{t}}` where :math:`\\\\rho < 1` which is a **stationary model**.
- If :math:`\\\\cH_0` from :eq:`TestModel3` is accepted, we then conclude that the model is: :math:`\\\\boldsymbol{X_t = X_{t-1} + \\\\varepsilon_{t}}` which is a **non stationary model**.
Examples
--------
Create an ARMA process and generate a time series:
>>> import openturns as ot
>>> arcoefficients = ot.ARMACoefficients([0.3])
>>> macoefficients = ot.ARMACoefficients(0)
>>> timeGrid = ot.RegularGrid(0.0, 0.1, 10)
>>> whiteNoise = ot.WhiteNoise(ot.Normal(), timeGrid)
>>> myARMA = ot.ARMA(arcoefficients, macoefficients, whiteNoise)
>>> realization = ot.TimeSeries(myARMA.getRealization())
>>> test = ot.DickeyFullerTest(realization)
Test the stationarity of the data without any asumption on the model:
>>> globalRes = test.runStrategy()
Test the stationarity knowing you have a drift and linear trend model:
>>> res1 = test.testUnitRootInDriftAndLinearTrendModel(0.95)
Test the stationarity knowing you have a drift model:
>>> res2 = test.testUnitRootInDriftModel(0.95)
Test the stationarity knowing you have an AR1 model:
>>> res3 = test.testUnitRootInAR1Model(0.95)
"
// ---------------------------------------------------------------------
%feature("docstring") OT::DickeyFullerTest::testUnitRootInDriftAndLinearTrendModel
"Test for unit root in model with drift and trend.
Parameters
----------
alpha : float, :math:`0 < \\\\alpha < 1`
The first order error of the test.
By default, :math:`\\\\alpha=0.95`.
Returns
-------
testResult : :class:`~openturns.TestResult`
Results container of the test detailed in :eq:`TestModel1`.
"
// ---------------------------------------------------------------------
%feature("docstring") OT::DickeyFullerTest::testUnitRootInDriftModel
"Test for unit root in model with drift.
Parameters
----------
alpha : float, :math:`0 < \\\\alpha < 1`
The first order error of the test.
By default, :math:`\\\\alpha=0.95`.
Returns
-------
testResult : :class:`~openturns.TestResult`
Results container of the test detailed in :eq:`TestModel2`.
"
// ---------------------------------------------------------------------
%feature("docstring") OT::DickeyFullerTest::testUnitRootInAR1Model
"Test for unit root in AR1 model.
Parameters
----------
alpha : float, :math:`0 < \\\\alpha < 1`
The first order error of the test.
By default, :math:`\\\\alpha=0.95`.
Returns
-------
testResult : :class:`~openturns.TestResult`
Results container of the test detailed in :eq:`TestModel3`.
"
// ---------------------------------------------------------------------
%feature("docstring") OT::DickeyFullerTest::testUnitRootAndNoLinearTrendInDriftAndLinearTrendModel
"Test for linear trend in model with unit root.
Parameters
----------
alpha : float, :math:`0 < \\\\alpha < 1`
The first order error of the test.
By default, :math:`\\\\alpha=0.95`
Returns
-------
testResult : :class:`~openturns.TestResult`
Results container of the test detailed in :eq:`TestSousModele1_2`.
"
// ---------------------------------------------------------------------
%feature("docstring") OT::DickeyFullerTest::testNoUnitRootAndNoLinearTrendInDriftAndLinearTrendModel
"Test for trend in model without unit root.
Parameters
----------
alpha : float, :math:`0 < \\\\alpha < 1`
The first order error of the test.
By default, :math:`\\\\alpha=0.95`.
Returns
-------
testResult : :class:`~openturns.TestResult`
Results container of the test detailed in :eq:`TestSousModele1_1`.
"
// ---------------------------------------------------------------------
%feature("docstring") OT::DickeyFullerTest::testUnitRootAndNoDriftInDriftModel
"Test for null drift in model with unit root.
Parameters
----------
alpha : float, :math:`0 < \\\\alpha < 1`
The first order error of the test.
By default, :math:`\\\\alpha=0.95`.
Returns
-------
testResult : :class:`~openturns.TestResult`
Results container of the test detailed in :eq:`TestSousModele2_2`.
"
// ---------------------------------------------------------------------
%feature("docstring") OT::DickeyFullerTest::testNoUnitRootAndNoDriftInDriftModel
"Test for null drift in model without unit root.
Parameters
----------
alpha : float, :math:`0 < \\\\alpha < 1`
The first order error of the test.
By default, :math:`\\\\alpha=0.95`.
Returns
-------
testResult : :class:`~openturns.TestResult`
Results container of the test detailed in :eq:`TestSousModele2_1`.
"
// ---------------------------------------------------------------------
%feature("docstring") OT::DickeyFullerTest::runStrategy
"Test the stationarity without any assumption on the model.
Parameters
----------
alpha : float, :math:`0 < \\\\alpha < 1`
The first order error of the test.
By default, :math:`\\\\alpha=0.95`.
Returns
-------
testResult : :class:`~openturns.TestResult`
Results container of the tests. The strategy if the one described above.
"
|