This file is indexed.

/usr/include/openturns/swig/CovarianceModelImplementation_doc.i is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
%define OT_CovarianceModel_doc
"Covariance model.

Notes
-----
We consider :math:`X: \\\\Omega \\\\times\\\\cD \\\\mapsto \\\\Rset^d` a multivariate
stochastic process of dimension :math:`d`, where :math:`\\\\omega \\\\in \\\\Omega`
is an event, :math:`\\\\cD` is a domain of :math:`\\\\Rset^n`,
:math:`\\\\vect{t}\\\\in \\\\cD` is a multivariate index and
:math:`X(\\\\omega, \\\\vect{t}) \\\\in \\\\Rset^d`.

We note :math:`X_{\\\\vect{t}}: \\\\Omega \\\\rightarrow \\\\Rset^d` the random variable at
index :math:`\\\\vect{t} \\\\in \\\\cD` defined by
:math:`X_{\\\\vect{t}}(\\\\omega)=X(\\\\omega, \\\\vect{t})` and
:math:`X(\\\\omega): \\\\cD  \\\\mapsto \\\\Rset^d` a realization of the process
:math:`X`, for a given :math:`\\\\omega \\\\in \\\\Omega` defined by
:math:`X(\\\\omega)(\\\\vect{t})=X(\\\\omega, \\\\vect{t})`.

If the process is a second order process, we note:

- :math:`m : \\\\cD \\\\mapsto  \\\\Rset^d` its *mean function*, defined by
  :math:`m(\\\\vect{t})=\\\\Expect{X_{\\\\vect{t}}}`,
- :math:`C : \\\\cD \\\\times \\\\cD \\\\mapsto  \\\\cS_d^+(\\\\Rset)` its
  *covariance function*, defined by
  :math:`C(\\\\vect{s}, \\\\vect{t})=\\\\Expect{(X_{\\\\vect{s}}-m(\\\\vect{s}))\\\\Tr{(X_{\\\\vect{t}}-m(\\\\vect{t}))}}`,
- :math:`R : \\\\cD \\\\times \\\\cD \\\\mapsto  \\\\cS_d^+(\\\\Rset)` its
  *correlation function*, defined for all :math:`(\\\\vect{s}, \\\\vect{t})`,
  by :math:`R(\\\\vect{s}, \\\\vect{t})` such that for all :math:`(i,j)`,
  :math:`R_{ij}(\\\\vect{s}, \\\\vect{t})=C_{ij}(\\\\vect{s}, \\\\vect{t})/\\\\sqrt{C_{ii}(\\\\vect{s}, \\\\vect{t})C_{jj}(\\\\vect{s}, \\\\vect{t})}`.


In a general way, the covariance models write:

.. math::

    C(\\\\vect{s}, \\\\vect{t}) = \\\\mat{L}_{\\\\rho}\\\\left(\\\\dfrac{\\\\vect{s}}{\\\\theta}, 
                            \\\\dfrac{\\\\vect{t}}{\\\\theta}\\\\right)\\\\, 
                            \\\\mbox{Diag}(\\\\vect{\\\\sigma}) \\\\, \\\\mat{R} \\\\, 
                            \\\\mbox{Diag}(\\\\vect{\\\\sigma}) \\\\, 
                            \\\\Tr{\\\\mat{L}}_{\\\\rho}\\\\left(\\\\dfrac{\\\\vect{s}}{\\\\theta}, 
                            \\\\dfrac{\\\\vect{t}}{\\\\theta}\\\\right), \\\\quad 
                            \\\\forall (\\\\vect{s}, \\\\vect{t}) \\\\in \\\\cD

where:

- :math:`\\\\vect{\\\\theta} \\\\in \\\\Rset^n` is the *scale* parameter
- :math:`\\\\vect{\\\\sigma} \\\\in \\\\Rset^d` id the *amplitude* parameter
- :math:`\\\\mat{L}_{\\\\rho}(\\\\vect{s}, \\\\vect{t})` is the Cholesky factor of 
  :math:`\\\\mat{\\\\rho}(\\\\vect{s}, \\\\vect{t})`: 

.. math::

    \\\\mat{L}_{\\\\rho}(\\\\vect{s}, \\\\vect{t})\\\\,\\\\Tr{\\\\mat{L}_{\\\\rho}(\\\\vect{s}, \\\\vect{t})}
    = \\\\mat{\\\\rho}(\\\\vect{s}, \\\\vect{t})

The correlation function :math:`\\\\mat{\\\\rho}` may depend on additional
specific parameters which are not made explicit here.

The global correlation is given by two separate correlations: 

    - the spatial correlation between the components of :math:`X_{\\\\vect{t}}`
      which is given by the correlation matrix
      :math:`\\\\mat{R} \\\\in \\\\cS_d^+(\\\\Rset)` and the vector of marginal variances
      :math:`\\\\vect{\\\\sigma} \\\\in \\\\Rset^d`.
      The spatial correlation does not depend on :math:`\\\\vect{t} \\\\in \\\\cD`.
      For each  :math:`\\\\vect{t}`, it links together the components of
      :math:`X_{\\\\vect{t}}`.
    - the correlation between :math:`X_{\\\\vect{s}}` and  :math:`X_{\\\\vect{t}}`
      which is given by :math:`\\\\mat{\\\\rho}(\\\\vect{s}, \\\\vect{t})`. 

        - In the general case, the correlation links each component
          :math:`X^i_{\\\\vect{t}}` to all the components of :math:`X_{\\\\vect{s}}`
          and :math:`\\\\mat{\\\\rho}(\\\\vect{s}, \\\\vect{t}) \\\\in \\\\cS_d^+(\\\\Rset)`;

        - In some particular cases, the correlation is such that
          :math:`X^i_{\\\\vect{t}}` depends only on the component
          :math:`X^i_{\\\\vect{s}}` and that link does not depend on the component
          :math:`i`. In that case, :math:`\\\\mat{\\\\rho}(\\\\vect{s}, \\\\vect{t})` can be
          defined from the scalar function :math:`\\\\rho(\\\\vect{s}, \\\\vect{t})` by
          :math:`\\\\mat{\\\\rho}(\\\\vect{s}, \\\\vect{t}) = \\\\rho(\\\\vect{s}, \\\\vect{t})\\\\, \\\\mat{I}_d`.
          Then, the covariance model writes:

.. math::

    C(\\\\vect{s}, \\\\vect{t}) = \\\\rho\\\\left(\\\\dfrac{\\\\vect{s}}{\\\\theta}, 
                                      \\\\dfrac{\\\\vect{t}}{\\\\theta}\\\\right)\\\\,
                            \\\\mbox{Diag}(\\\\vect{\\\\sigma}) \\\\, \\\\mat{R} \\\\,
                            \\\\mbox{Diag}(\\\\vect{\\\\sigma}), \\\\quad
                            \\\\forall (\\\\vect{s}, \\\\vect{t}) \\\\in \\\\cD


"

%enddef
%feature("docstring") OT::CovarianceModelImplementation
OT_CovarianceModel_doc

// ---------------------------------------------------------------------

%define OT_CovarianceModel_computeAsScalar_doc
"Compute the covariance function for scalar model.

Available usages:
    computeAsScalar(s, t)

    computeAsScalar(tau)

Parameters
----------
s, t : sequences of float
    Multivariate index :math:`(\\\\vect{s}, \\\\vect{t}) \\\\in \\\\cD \\\\times \\\\cD`
tau : sequence of float
    Multivariate index :math:`\\\\vect{\\\\tau} \\\\in \\\\cD`

Returns
-------
covariance : float
    Covariance.

Notes
-----
The method makes sense only if the dimension of the process is :math:`d=1`.
It evaluates :math:`C(\\\\vect{s}, \\\\vect{t})`.

In the second usage, the covariance model must be stationary. Then we note
:math:`C^{stat}(\\\\vect{\\\\tau})` for :math:`C(\\\\vect{s}, \\\\vect{s}+\\\\vect{\\\\tau})` as
this quantity does not depend on :math:`\\\\vect{s}`."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::computeAsScalar
OT_CovarianceModel_computeAsScalar_doc

// ---------------------------------------------------------------------

%define OT_CovarianceModel_computeStandardRepresentative_doc
"Compute the standard representative function of the covariance model.

Available usages:
    computeStandardRepresentative(s, t)

    computeStandardRepresentative(tau)

Parameters
----------
s, t : floats or sequences of float
    Multivariate index :math:`(\\\\vect{s}, \\\\vect{t}) \\\\in \\\\cD \\\\times \\\\cD`
tau : float or sequence of float
    Multivariate index :math:`\\\\vect{\\\\tau} \\\\in \\\\cD`

Returns
-------
rho : float
    Correlation model :math:`\\\\rho`


Notes
-----
It evaluates the scalar function 
:math:`\\\\rho\\\\left(\\\\dfrac{\\\\vect{s}}{\\\\theta}, \\\\dfrac{\\\\vect{t}}{\\\\theta}\\\\right)` or 
:math:`\\\\rho\\\\left(\\\\dfrac{\\\\vect{\\\\tau}}{\\\\theta}\\\\right)` if the model is stationary."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::computeStandardRepresentative
OT_CovarianceModel_computeStandardRepresentative_doc

// ---------------------------------------------------------------------

%define OT_CovarianceModel_discretize_doc
"Discretize the covariance function on a given mesh.

Parameters
----------
meshOrGrid : :class:`~openturns.Mesh` or :class:`~openturns.RegularGrid`
    Mesh or time grid of size :math:`N` associated with the process.

Returns
-------
covarianceMatrix : :class:`~openturns.CovarianceMatrix`
    Covariance matrix :math:`\\\\in \\\\cS_{nd}^+(\\\\Rset)` (if the process is of
    dimension :math:`d`

Notes
-----
This method makes a discretization of the model on *meshOrGrid* composed of
the vertices :math:`(\\\\vect{t}_1, \\\\dots, \\\\vect{t}_{N-1})` and returns the
covariance matrix:

.. math ::

    \\\\mat{C}_{1,\\\\dots,k} = \\\\left(
        \\\\begin{array}{cccc}
        C(\\\\vect{t}_1, \\\\vect{t}_1) &C(\\\\vect{t}_1, \\\\vect{t}_2) & \\\\dots & 
        C(\\\\vect{t}_1, \\\\vect{t}_{k}) \\\\\\\\
        \\\\dots & C(\\\\vect{t}_2, \\\\vect{t}_2)  & \\\\dots & 
        C(\\\\vect{t}_2, \\\\vect{t}_{k}) \\\\\\\\
        \\\\dots & \\\\dots & \\\\dots & \\\\dots \\\\\\\\
        \\\\dots & \\\\dots & \\\\dots & C(\\\\vect{t}_{k}, \\\\vect{t}_{k})
        \\\\end{array} \\\\right)"
%enddef
%feature("docstring") OT::CovarianceModelImplementation::discretize
OT_CovarianceModel_discretize_doc

// ---------------------------------------------------------------------

%define OT_CovarianceModel_discretizeAndFactorize_doc
"Discretize and factorize the covariance function on a given mesh.

Parameters
----------
meshOrGrid : :class:`~openturns.Mesh` or :class:`~openturns.RegularGrid`
    Mesh or time grid of size :math:`N` associated with the process.

Returns
-------
CholeskyMatrix : :class:`~openturns.TriangularMatrix`
    Cholesky factor of the covariance matrix :math:`\\\\in \\\\cM_{nd\\\\times nd}(\\\\Rset)`
    (if the process is of dimension :math:`d`).

Notes
-----
This method makes a discretization of the model on *meshOrGrid* composed of
the vertices :math:`(\\\\vect{t}_1, \\\\dots, \\\\vect{t}_{N-1})` thanks to the
`discretize` method and returns its Cholesky factor."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::discretizeAndFactorize
OT_CovarianceModel_discretizeAndFactorize_doc

// ---------------------------------------------------------------------

%define OT_CovarianceModel_discretizeHMatrix_doc
"Discretize the covariance function on a given mesh using HMatrix result.

Parameters
----------
meshOrGrid : :class:`~openturns.Mesh` or :class:`~openturns.RegularGrid`
    Mesh or time grid of size :math:`N` associated with the process.
nuggetFactor: float
    Nugget factor to be added to the discretized matrix
hmatParam : :class:`~openturns.HMatrixParameters`
    Parameter values for the HMatrix

Returns
-------
HMatrix : :class:`~openturns.HMatrix`
    Covariance matrix :math:`\\\\in\\\\cS_{nd}^+(\\\\Rset)` (if the process is of
    dimension :math:`d`), stored in hierarchical format (H-Matrix)

Notes
-----
This method si similar to the *discretize* method. This method requires that 
OpenTURNS has been compiled with the hmat library.
The method is helpfull for very large parameters (Mesh, grid, Sample) 
as its compress data.
"
%enddef
%feature("docstring") OT::CovarianceModelImplementation::discretizeHMatrix
OT_CovarianceModel_discretizeHMatrix_doc

// ---------------------------------------------------------------------

%define OT_CovarianceModel_discretizeAndFactorizeHMatrix_doc
"Discretize and factorize the covariance function on a given mesh.

This uses HMatrix.

Parameters
----------
meshOrGrid : :class:`~openturns.Mesh` or :class:`~openturns.RegularGrid`
    Mesh or time grid of size :math:`N` associated with the process.
nuggetFactor: float
    Nugget factor to be added to the discretized matrix
hmatParam : :class:`~openturns.HMatrixParameters`
    Parameter values for the HMatrix

Returns
-------
HMatrix : :class:`~openturns.HMatrix`
    Cholesk matrix :math:`\\\\in \\\\cS_{nd}^+(\\\\Rset)` (if the process is of
    dimension :math:`d`), stored in hierarchical format (H-Matrix)

Notes
-----
This method si similar to the *discretizeAndFactorize* method. This method 
requires that OpenTURNS has been compiled with the hmat library.
The method is helpfull for very large parameters (Mesh, grid, Sample) 
as its compress data.
"
%enddef
%feature("docstring") OT::CovarianceModelImplementation::discretizeAndFactorizeHMatrix
OT_CovarianceModel_discretizeAndFactorizeHMatrix_doc

// ---------------------------------------------------------------------

%define OT_CovarianceModel_discretizeRow_doc
"**(TODO)**"
%enddef
%feature("docstring") OT::CovarianceModelImplementation::discretizeRow
OT_CovarianceModel_discretizeRow_doc


// ---------------------------------------------------------------------

%define OT_CovarianceModel_getAmplitude_doc
"Get the amplitude parameter :math:`\\\\vect{\\\\sigma}` of the covariance function.

Returns
-------
amplitude : :class:`~openturns.Point`
    The amplitude parameter :math:`\\\\vect{\\\\sigma} \\\\in \\\\Rset^d` of the covariance 
    function."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::getAmplitude
OT_CovarianceModel_getAmplitude_doc

// ---------------------------------------------------------------------

%define OT_CovarianceModel_getDimension_doc
"Get the dimension :math:`d` of the covariance function.

Returns
-------
d : int
    Dimension :math:`d` such that :math:`C : \\\\cD \\\\times \\\\cD \\\\mapsto \\\\cS_d^+(\\\\Rset).`
    This is the dimension of the process :math:`X`."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::getDimension
OT_CovarianceModel_getDimension_doc

// ---------------------------------------------------------------------

%define OT_CovarianceModel_get_marginal
"Get the ith marginal of the model.

Returns
-------
marginal : int
    index of marginal of the model."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::getMarginal
OT_CovarianceModel_get_marginal

// ---------------------------------------------------------------------

%define OT_CovarianceModel_get_nugget_factor_doc
"Accessor to the nugget factor.

This parameter allows smooth predictions from noisy data.
The nugget is added to the diagonal of the assumed training covariance
(thanks to discretize) and acts as a Tikhonov regularization in the
problem.

Returns
-------
nuggetFactor : float
    Nugget factor used for the regularization of the discretized covariance
    matrix."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::getNuggetFactor
OT_CovarianceModel_get_nugget_factor_doc

// ---------------------------------------------------------------------

%define OT_CovarianceModel_getParameter_doc
"Get the parameters of the covariance function.

Returns
-------
parameters : :class:`~openturns.Point`
    List of the scale parameter :math:`\\\\vect{\\\\theta} \\\\in \\\\Rset^n` and the
    amplitude parameter :math:`\\\\vect{\\\\sigma} \\\\in \\\\Rset^d` of the covariance
    function.

   The other specific parameters are not included."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::getParameter
OT_CovarianceModel_getParameter_doc

// ---------------------------------------------------------------------

%define OT_CovarianceModel_getParameterDescription_doc
"Get the description of the covariance function parameters.

Returns
-------
descriptionParam : :class:`~openturns.Description`
    Description of the components of the parameters obtained with the
    *getParameter* method.."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::getParameterDescription
OT_CovarianceModel_getParameterDescription_doc

// ---------------------------------------------------------------------
%define OT_CovarianceModel_getScale_doc
"Get the scale parameter :math:`\\\\vect{\\\\theta}` of the covariance function.

Returns
-------
scale : :class:`~openturns.Point`
    The scale parameter :math:`\\\\vect{\\\\theta} \\\\in \\\\Rset^n` used in the 
    covariance function."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::getScale
OT_CovarianceModel_getScale_doc

// ---------------------------------------------------------------------

%define OT_CovarianceModel_getSpatialCorrelation_doc
"Get the spatial correlation matrix :math:`\\\\mat{R}` of the covariance function.

Returns
-------
spatialCorrelation : :class:`~openturns.CorrelationMatrix`
    Correlation matrix :math:`\\\\mat{R} \\\\in \\\\cS_d^+(\\\\Rset)`."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::getSpatialCorrelation
OT_CovarianceModel_getSpatialCorrelation_doc

// ---------------------------------------------------------------------

%define OT_CovarianceModel_getSpatialDimension_doc
"Get the spatial dimension :math:`n` of the covariance function.

Returns
-------
spatialDimension : int
    Spatial dimension :math:`n` of the covariance function."

%enddef
%feature("docstring") OT::CovarianceModelImplementation::getSpatialDimension
OT_CovarianceModel_getSpatialDimension_doc

// ---------------------------------------------------------------------

%define OT_CovarianceModel_isDiagonal_doc
"Test whether the model is diagonal or not.

Returns
-------
isDiagonal : bool
    *True* if the model is diagonal."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::isDiagonal
OT_CovarianceModel_isDiagonal_doc

// ---------------------------------------------------------------------

%define OT_CovarianceModel_isStationary_doc
"Test whether the model is stationary or not.

Returns
-------
isStationary : bool
    *True* if the model is stationary.

Notes
-----
The covariance function :math:`C` is stationary when it is invariant by
translation:

.. math::

    \\\\forall(\\\\vect{s},\\\\vect{t},\\\\vect{h}) \\\\in \\\\cD \\\\times \\\\cD, & \\\\, \\\\quad
    C(\\\\vect{s}, \\\\vect{s}+\\\\vect{h}) = C(\\\\vect{t}, \\\\vect{t}+\\\\vect{h})


We note :math:`C^{stat}(\\\\vect{\\\\tau})` for :math:`C(\\\\vect{s}, \\\\vect{s}+\\\\vect{\\\\tau})`."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::isStationary
OT_CovarianceModel_isStationary_doc

// ---------------------------------------------------------------------

%define OT_CovarianceModel_partialGradient_doc
"Compute the gradient of the covariance function.

Parameters
----------
s, t : floats or sequences of float
    Multivariate index :math:`(\\\\vect{s}, \\\\vect{t}) \\\\in \\\\cD \\\\times \\\\cD`.

Returns
-------
gradient : :class:`~openturns.Matrix`
    Gradient of the covariance function."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::partialGradient
OT_CovarianceModel_partialGradient_doc

// ---------------------------------------------------------------------

%define OT_CovarianceModel_parameterGradient_doc
"Compute the gradient according to the parameters.

Parameters
----------
s, t : sequences of float
    Multivariate index :math:`(\\\\vect{s}, \\\\vect{t}) \\\\in \\\\cD \\\\times \\\\cD`.

Returns
-------
gradient : :class:`~openturns.Matrix`
    Gradient of the function according to the parameters."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::parameterGradient
OT_CovarianceModel_parameterGradient_doc

// ---------------------------------------------------------------------

%define OT_CovarianceModel_setAmplitude_doc
"Set the amplitude parameter :math:`\\\\vect{\\\\sigma}` of the covariance function.

Parameters
----------
amplitude : :class:`~openturns.Point`
    The amplitude parameter :math:`\\\\vect{\\\\sigma} \\\\in \\\\Rset^d` to be used in the
    covariance function. 
    Its size must be equal to the dimension of the covariance function."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::setAmplitude
OT_CovarianceModel_setAmplitude_doc

// ---------------------------------------------------------------------

%define OT_CovarianceModel_setScale_doc
"Set the scale parameter :math:`\\\\vect{\\\\theta}` of the covariance function.

Parameters
----------
scale : :class:`~openturns.Point`
    The scale parameter :math:`\\\\vect{\\\\theta} \\\\in \\\\Rset^n` to be used in the
    covariance function.
    Its size must be equal to the spatial dimension of the covariance function."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::setScale
OT_CovarianceModel_setScale_doc

// ---------------------------------------------------------------------

%define OT_CovarianceModel_set_nugget_factor_doc
"Set the nugget factor for the regularization.

Acts on the discretized covariance matrix.

Parameters
----------
nuggetFactor : float
    nugget factor to be used for the regularization of the discretized
    covariance matrix."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::setNuggetFactor
OT_CovarianceModel_set_nugget_factor_doc

// ---------------------------------------------------------------------

%define OT_CovarianceModel_setParameter_doc
"Set the parameters of the covariance function.

Returns
-------
parameters : :class:`~openturns.PointWithDescription`
    List of the scale parameter :math:`\\\\vect{\\\\theta} \\\\in \\\\Rset^n` and the
    amplitude parameter :math:`\\\\vect{\\\\sigma} \\\\in \\\\Rset^d` of the covariance
    function.

    Must be of dimension :math:`n+d`."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::setParameter
OT_CovarianceModel_setParameter_doc

// ---------------------------------------------------------------------

%define OT_CovarianceModel_setSpatialCorrelation_doc
"Set the spatial correlation matrix :math:`\\\\mat{R}` of the covariance function.

Parameters
----------
spatialCorrelation : :class:`~openturns.CorrelationMatrix`
    Correlation matrix :math:`\\\\mat{R} \\\\in \\\\cS_d^+([-1,1])`."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::setSpatialCorrelation
OT_CovarianceModel_setSpatialCorrelation_doc

// ---------------------------------------------------------------------

%define OT_CovarianceModel_operator_doc
"Evaluate the covariance function.

Available usages:
    __call__(s, t)

    __call__(tau)

Parameters
----------
s, t : floats or sequences of float
    Multivariate index :math:`(\\\\vect{s}, \\\\vect{t}) \\\\in \\\\cD \\\\times \\\\cD`.
tau : float or sequence of float
    Multivariate index :math:`\\\\vect{\\\\tau} \\\\in \\\\cD`.

Returns
-------
covariance : CovarianceMatrix
    The evaluation of the covariance function."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::operator()
OT_CovarianceModel_operator_doc

// ---------------------------------------------------------------------

%define OT_CovarianceModel_setActiveParameter_doc
"Accessor to the active parameter set.

Parameters
----------
active : sequence of int
    Indices of the active parameters."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::setActiveParameter
OT_CovarianceModel_setActiveParameter_doc

// ---------------------------------------------------------------------

%define OT_CovarianceModel_getActiveParameter_doc
"Accessor to the active parameter set.

Returns
-------
active : :class:`~openturns.Indices`
    Indices of the active parameters."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::getActiveParameter
OT_CovarianceModel_getActiveParameter_doc

// ---------------------------------------------------------------------

%define OT_CovarianceModel_draw_doc
"Draw a specific component of the covariance model with spatial dimension 1.

Parameters
----------
rowIndex : int, :math:`0 \\\\leq rowIndex < dimension`
    The row index of the component to draw. Default value is 0.
columnIndex: int, :math:`0 \\\\leq columnIndex < dimension`
    The column index of the component to draw. Default value is 0.
tMin : float
    The lower bound of the range over which the model is plotted. Default value is *CovarianceModel-DefaultTMin* in :class:`~openturns.ResourceMap`.
tMax : float
    The upper bound of the range over which the model is plotted. Default value is *CovarianceModel-DefaultTMax* in :class:`~openturns.ResourceMap`.
pointNumber : int, :math:`pointNumber \\\\geq 2`
    The discretization of the range :math:`[tMin,tMax]` over which the model is plotted. Default value is *CovarianceModel-DefaultPointNumber* in  class:`~openturns.ResourceMap`.
asStationary : bool
    Flag to tell if the model has to be plotted as a stationary model, ie as a function of the lag :math:`\\\\tau=t-s` if equals to *True*, or as a non-stationary model, ie as a function of :math:`(s,t)` if equals to *False*. Default value is *True*.
correlationFlag : bool
    Flag to tell if the model has to be plotted as a correlation function if equals to *True* or as a covariance function if equals to *False*. Default value is *False*.

Returns
-------
graph : :class:`~openturns.Graph`
    A graph containing a unique curve if *asStationary=True* and if the model is actually a stationary model, or containing the iso-values of the model if *asStationary=False* or if the model is nonstationary.

"
%enddef
%feature("docstring") OT::CovarianceModelImplementation::draw
OT_CovarianceModel_draw_doc