/usr/include/openturns/swig/CovarianceModelImplementation_doc.i is in libopenturns-dev 1.9-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 | %define OT_CovarianceModel_doc
"Covariance model.
Notes
-----
We consider :math:`X: \\\\Omega \\\\times\\\\cD \\\\mapsto \\\\Rset^d` a multivariate
stochastic process of dimension :math:`d`, where :math:`\\\\omega \\\\in \\\\Omega`
is an event, :math:`\\\\cD` is a domain of :math:`\\\\Rset^n`,
:math:`\\\\vect{t}\\\\in \\\\cD` is a multivariate index and
:math:`X(\\\\omega, \\\\vect{t}) \\\\in \\\\Rset^d`.
We note :math:`X_{\\\\vect{t}}: \\\\Omega \\\\rightarrow \\\\Rset^d` the random variable at
index :math:`\\\\vect{t} \\\\in \\\\cD` defined by
:math:`X_{\\\\vect{t}}(\\\\omega)=X(\\\\omega, \\\\vect{t})` and
:math:`X(\\\\omega): \\\\cD \\\\mapsto \\\\Rset^d` a realization of the process
:math:`X`, for a given :math:`\\\\omega \\\\in \\\\Omega` defined by
:math:`X(\\\\omega)(\\\\vect{t})=X(\\\\omega, \\\\vect{t})`.
If the process is a second order process, we note:
- :math:`m : \\\\cD \\\\mapsto \\\\Rset^d` its *mean function*, defined by
:math:`m(\\\\vect{t})=\\\\Expect{X_{\\\\vect{t}}}`,
- :math:`C : \\\\cD \\\\times \\\\cD \\\\mapsto \\\\cS_d^+(\\\\Rset)` its
*covariance function*, defined by
:math:`C(\\\\vect{s}, \\\\vect{t})=\\\\Expect{(X_{\\\\vect{s}}-m(\\\\vect{s}))\\\\Tr{(X_{\\\\vect{t}}-m(\\\\vect{t}))}}`,
- :math:`R : \\\\cD \\\\times \\\\cD \\\\mapsto \\\\cS_d^+(\\\\Rset)` its
*correlation function*, defined for all :math:`(\\\\vect{s}, \\\\vect{t})`,
by :math:`R(\\\\vect{s}, \\\\vect{t})` such that for all :math:`(i,j)`,
:math:`R_{ij}(\\\\vect{s}, \\\\vect{t})=C_{ij}(\\\\vect{s}, \\\\vect{t})/\\\\sqrt{C_{ii}(\\\\vect{s}, \\\\vect{t})C_{jj}(\\\\vect{s}, \\\\vect{t})}`.
In a general way, the covariance models write:
.. math::
C(\\\\vect{s}, \\\\vect{t}) = \\\\mat{L}_{\\\\rho}\\\\left(\\\\dfrac{\\\\vect{s}}{\\\\theta},
\\\\dfrac{\\\\vect{t}}{\\\\theta}\\\\right)\\\\,
\\\\mbox{Diag}(\\\\vect{\\\\sigma}) \\\\, \\\\mat{R} \\\\,
\\\\mbox{Diag}(\\\\vect{\\\\sigma}) \\\\,
\\\\Tr{\\\\mat{L}}_{\\\\rho}\\\\left(\\\\dfrac{\\\\vect{s}}{\\\\theta},
\\\\dfrac{\\\\vect{t}}{\\\\theta}\\\\right), \\\\quad
\\\\forall (\\\\vect{s}, \\\\vect{t}) \\\\in \\\\cD
where:
- :math:`\\\\vect{\\\\theta} \\\\in \\\\Rset^n` is the *scale* parameter
- :math:`\\\\vect{\\\\sigma} \\\\in \\\\Rset^d` id the *amplitude* parameter
- :math:`\\\\mat{L}_{\\\\rho}(\\\\vect{s}, \\\\vect{t})` is the Cholesky factor of
:math:`\\\\mat{\\\\rho}(\\\\vect{s}, \\\\vect{t})`:
.. math::
\\\\mat{L}_{\\\\rho}(\\\\vect{s}, \\\\vect{t})\\\\,\\\\Tr{\\\\mat{L}_{\\\\rho}(\\\\vect{s}, \\\\vect{t})}
= \\\\mat{\\\\rho}(\\\\vect{s}, \\\\vect{t})
The correlation function :math:`\\\\mat{\\\\rho}` may depend on additional
specific parameters which are not made explicit here.
The global correlation is given by two separate correlations:
- the spatial correlation between the components of :math:`X_{\\\\vect{t}}`
which is given by the correlation matrix
:math:`\\\\mat{R} \\\\in \\\\cS_d^+(\\\\Rset)` and the vector of marginal variances
:math:`\\\\vect{\\\\sigma} \\\\in \\\\Rset^d`.
The spatial correlation does not depend on :math:`\\\\vect{t} \\\\in \\\\cD`.
For each :math:`\\\\vect{t}`, it links together the components of
:math:`X_{\\\\vect{t}}`.
- the correlation between :math:`X_{\\\\vect{s}}` and :math:`X_{\\\\vect{t}}`
which is given by :math:`\\\\mat{\\\\rho}(\\\\vect{s}, \\\\vect{t})`.
- In the general case, the correlation links each component
:math:`X^i_{\\\\vect{t}}` to all the components of :math:`X_{\\\\vect{s}}`
and :math:`\\\\mat{\\\\rho}(\\\\vect{s}, \\\\vect{t}) \\\\in \\\\cS_d^+(\\\\Rset)`;
- In some particular cases, the correlation is such that
:math:`X^i_{\\\\vect{t}}` depends only on the component
:math:`X^i_{\\\\vect{s}}` and that link does not depend on the component
:math:`i`. In that case, :math:`\\\\mat{\\\\rho}(\\\\vect{s}, \\\\vect{t})` can be
defined from the scalar function :math:`\\\\rho(\\\\vect{s}, \\\\vect{t})` by
:math:`\\\\mat{\\\\rho}(\\\\vect{s}, \\\\vect{t}) = \\\\rho(\\\\vect{s}, \\\\vect{t})\\\\, \\\\mat{I}_d`.
Then, the covariance model writes:
.. math::
C(\\\\vect{s}, \\\\vect{t}) = \\\\rho\\\\left(\\\\dfrac{\\\\vect{s}}{\\\\theta},
\\\\dfrac{\\\\vect{t}}{\\\\theta}\\\\right)\\\\,
\\\\mbox{Diag}(\\\\vect{\\\\sigma}) \\\\, \\\\mat{R} \\\\,
\\\\mbox{Diag}(\\\\vect{\\\\sigma}), \\\\quad
\\\\forall (\\\\vect{s}, \\\\vect{t}) \\\\in \\\\cD
"
%enddef
%feature("docstring") OT::CovarianceModelImplementation
OT_CovarianceModel_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_computeAsScalar_doc
"Compute the covariance function for scalar model.
Available usages:
computeAsScalar(s, t)
computeAsScalar(tau)
Parameters
----------
s, t : sequences of float
Multivariate index :math:`(\\\\vect{s}, \\\\vect{t}) \\\\in \\\\cD \\\\times \\\\cD`
tau : sequence of float
Multivariate index :math:`\\\\vect{\\\\tau} \\\\in \\\\cD`
Returns
-------
covariance : float
Covariance.
Notes
-----
The method makes sense only if the dimension of the process is :math:`d=1`.
It evaluates :math:`C(\\\\vect{s}, \\\\vect{t})`.
In the second usage, the covariance model must be stationary. Then we note
:math:`C^{stat}(\\\\vect{\\\\tau})` for :math:`C(\\\\vect{s}, \\\\vect{s}+\\\\vect{\\\\tau})` as
this quantity does not depend on :math:`\\\\vect{s}`."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::computeAsScalar
OT_CovarianceModel_computeAsScalar_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_computeStandardRepresentative_doc
"Compute the standard representative function of the covariance model.
Available usages:
computeStandardRepresentative(s, t)
computeStandardRepresentative(tau)
Parameters
----------
s, t : floats or sequences of float
Multivariate index :math:`(\\\\vect{s}, \\\\vect{t}) \\\\in \\\\cD \\\\times \\\\cD`
tau : float or sequence of float
Multivariate index :math:`\\\\vect{\\\\tau} \\\\in \\\\cD`
Returns
-------
rho : float
Correlation model :math:`\\\\rho`
Notes
-----
It evaluates the scalar function
:math:`\\\\rho\\\\left(\\\\dfrac{\\\\vect{s}}{\\\\theta}, \\\\dfrac{\\\\vect{t}}{\\\\theta}\\\\right)` or
:math:`\\\\rho\\\\left(\\\\dfrac{\\\\vect{\\\\tau}}{\\\\theta}\\\\right)` if the model is stationary."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::computeStandardRepresentative
OT_CovarianceModel_computeStandardRepresentative_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_discretize_doc
"Discretize the covariance function on a given mesh.
Parameters
----------
meshOrGrid : :class:`~openturns.Mesh` or :class:`~openturns.RegularGrid`
Mesh or time grid of size :math:`N` associated with the process.
Returns
-------
covarianceMatrix : :class:`~openturns.CovarianceMatrix`
Covariance matrix :math:`\\\\in \\\\cS_{nd}^+(\\\\Rset)` (if the process is of
dimension :math:`d`
Notes
-----
This method makes a discretization of the model on *meshOrGrid* composed of
the vertices :math:`(\\\\vect{t}_1, \\\\dots, \\\\vect{t}_{N-1})` and returns the
covariance matrix:
.. math ::
\\\\mat{C}_{1,\\\\dots,k} = \\\\left(
\\\\begin{array}{cccc}
C(\\\\vect{t}_1, \\\\vect{t}_1) &C(\\\\vect{t}_1, \\\\vect{t}_2) & \\\\dots &
C(\\\\vect{t}_1, \\\\vect{t}_{k}) \\\\\\\\
\\\\dots & C(\\\\vect{t}_2, \\\\vect{t}_2) & \\\\dots &
C(\\\\vect{t}_2, \\\\vect{t}_{k}) \\\\\\\\
\\\\dots & \\\\dots & \\\\dots & \\\\dots \\\\\\\\
\\\\dots & \\\\dots & \\\\dots & C(\\\\vect{t}_{k}, \\\\vect{t}_{k})
\\\\end{array} \\\\right)"
%enddef
%feature("docstring") OT::CovarianceModelImplementation::discretize
OT_CovarianceModel_discretize_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_discretizeAndFactorize_doc
"Discretize and factorize the covariance function on a given mesh.
Parameters
----------
meshOrGrid : :class:`~openturns.Mesh` or :class:`~openturns.RegularGrid`
Mesh or time grid of size :math:`N` associated with the process.
Returns
-------
CholeskyMatrix : :class:`~openturns.TriangularMatrix`
Cholesky factor of the covariance matrix :math:`\\\\in \\\\cM_{nd\\\\times nd}(\\\\Rset)`
(if the process is of dimension :math:`d`).
Notes
-----
This method makes a discretization of the model on *meshOrGrid* composed of
the vertices :math:`(\\\\vect{t}_1, \\\\dots, \\\\vect{t}_{N-1})` thanks to the
`discretize` method and returns its Cholesky factor."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::discretizeAndFactorize
OT_CovarianceModel_discretizeAndFactorize_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_discretizeHMatrix_doc
"Discretize the covariance function on a given mesh using HMatrix result.
Parameters
----------
meshOrGrid : :class:`~openturns.Mesh` or :class:`~openturns.RegularGrid`
Mesh or time grid of size :math:`N` associated with the process.
nuggetFactor: float
Nugget factor to be added to the discretized matrix
hmatParam : :class:`~openturns.HMatrixParameters`
Parameter values for the HMatrix
Returns
-------
HMatrix : :class:`~openturns.HMatrix`
Covariance matrix :math:`\\\\in\\\\cS_{nd}^+(\\\\Rset)` (if the process is of
dimension :math:`d`), stored in hierarchical format (H-Matrix)
Notes
-----
This method si similar to the *discretize* method. This method requires that
OpenTURNS has been compiled with the hmat library.
The method is helpfull for very large parameters (Mesh, grid, Sample)
as its compress data.
"
%enddef
%feature("docstring") OT::CovarianceModelImplementation::discretizeHMatrix
OT_CovarianceModel_discretizeHMatrix_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_discretizeAndFactorizeHMatrix_doc
"Discretize and factorize the covariance function on a given mesh.
This uses HMatrix.
Parameters
----------
meshOrGrid : :class:`~openturns.Mesh` or :class:`~openturns.RegularGrid`
Mesh or time grid of size :math:`N` associated with the process.
nuggetFactor: float
Nugget factor to be added to the discretized matrix
hmatParam : :class:`~openturns.HMatrixParameters`
Parameter values for the HMatrix
Returns
-------
HMatrix : :class:`~openturns.HMatrix`
Cholesk matrix :math:`\\\\in \\\\cS_{nd}^+(\\\\Rset)` (if the process is of
dimension :math:`d`), stored in hierarchical format (H-Matrix)
Notes
-----
This method si similar to the *discretizeAndFactorize* method. This method
requires that OpenTURNS has been compiled with the hmat library.
The method is helpfull for very large parameters (Mesh, grid, Sample)
as its compress data.
"
%enddef
%feature("docstring") OT::CovarianceModelImplementation::discretizeAndFactorizeHMatrix
OT_CovarianceModel_discretizeAndFactorizeHMatrix_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_discretizeRow_doc
"**(TODO)**"
%enddef
%feature("docstring") OT::CovarianceModelImplementation::discretizeRow
OT_CovarianceModel_discretizeRow_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_getAmplitude_doc
"Get the amplitude parameter :math:`\\\\vect{\\\\sigma}` of the covariance function.
Returns
-------
amplitude : :class:`~openturns.Point`
The amplitude parameter :math:`\\\\vect{\\\\sigma} \\\\in \\\\Rset^d` of the covariance
function."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::getAmplitude
OT_CovarianceModel_getAmplitude_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_getDimension_doc
"Get the dimension :math:`d` of the covariance function.
Returns
-------
d : int
Dimension :math:`d` such that :math:`C : \\\\cD \\\\times \\\\cD \\\\mapsto \\\\cS_d^+(\\\\Rset).`
This is the dimension of the process :math:`X`."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::getDimension
OT_CovarianceModel_getDimension_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_get_marginal
"Get the ith marginal of the model.
Returns
-------
marginal : int
index of marginal of the model."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::getMarginal
OT_CovarianceModel_get_marginal
// ---------------------------------------------------------------------
%define OT_CovarianceModel_get_nugget_factor_doc
"Accessor to the nugget factor.
This parameter allows smooth predictions from noisy data.
The nugget is added to the diagonal of the assumed training covariance
(thanks to discretize) and acts as a Tikhonov regularization in the
problem.
Returns
-------
nuggetFactor : float
Nugget factor used for the regularization of the discretized covariance
matrix."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::getNuggetFactor
OT_CovarianceModel_get_nugget_factor_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_getParameter_doc
"Get the parameters of the covariance function.
Returns
-------
parameters : :class:`~openturns.Point`
List of the scale parameter :math:`\\\\vect{\\\\theta} \\\\in \\\\Rset^n` and the
amplitude parameter :math:`\\\\vect{\\\\sigma} \\\\in \\\\Rset^d` of the covariance
function.
The other specific parameters are not included."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::getParameter
OT_CovarianceModel_getParameter_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_getParameterDescription_doc
"Get the description of the covariance function parameters.
Returns
-------
descriptionParam : :class:`~openturns.Description`
Description of the components of the parameters obtained with the
*getParameter* method.."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::getParameterDescription
OT_CovarianceModel_getParameterDescription_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_getScale_doc
"Get the scale parameter :math:`\\\\vect{\\\\theta}` of the covariance function.
Returns
-------
scale : :class:`~openturns.Point`
The scale parameter :math:`\\\\vect{\\\\theta} \\\\in \\\\Rset^n` used in the
covariance function."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::getScale
OT_CovarianceModel_getScale_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_getSpatialCorrelation_doc
"Get the spatial correlation matrix :math:`\\\\mat{R}` of the covariance function.
Returns
-------
spatialCorrelation : :class:`~openturns.CorrelationMatrix`
Correlation matrix :math:`\\\\mat{R} \\\\in \\\\cS_d^+(\\\\Rset)`."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::getSpatialCorrelation
OT_CovarianceModel_getSpatialCorrelation_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_getSpatialDimension_doc
"Get the spatial dimension :math:`n` of the covariance function.
Returns
-------
spatialDimension : int
Spatial dimension :math:`n` of the covariance function."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::getSpatialDimension
OT_CovarianceModel_getSpatialDimension_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_isDiagonal_doc
"Test whether the model is diagonal or not.
Returns
-------
isDiagonal : bool
*True* if the model is diagonal."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::isDiagonal
OT_CovarianceModel_isDiagonal_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_isStationary_doc
"Test whether the model is stationary or not.
Returns
-------
isStationary : bool
*True* if the model is stationary.
Notes
-----
The covariance function :math:`C` is stationary when it is invariant by
translation:
.. math::
\\\\forall(\\\\vect{s},\\\\vect{t},\\\\vect{h}) \\\\in \\\\cD \\\\times \\\\cD, & \\\\, \\\\quad
C(\\\\vect{s}, \\\\vect{s}+\\\\vect{h}) = C(\\\\vect{t}, \\\\vect{t}+\\\\vect{h})
We note :math:`C^{stat}(\\\\vect{\\\\tau})` for :math:`C(\\\\vect{s}, \\\\vect{s}+\\\\vect{\\\\tau})`."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::isStationary
OT_CovarianceModel_isStationary_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_partialGradient_doc
"Compute the gradient of the covariance function.
Parameters
----------
s, t : floats or sequences of float
Multivariate index :math:`(\\\\vect{s}, \\\\vect{t}) \\\\in \\\\cD \\\\times \\\\cD`.
Returns
-------
gradient : :class:`~openturns.Matrix`
Gradient of the covariance function."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::partialGradient
OT_CovarianceModel_partialGradient_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_parameterGradient_doc
"Compute the gradient according to the parameters.
Parameters
----------
s, t : sequences of float
Multivariate index :math:`(\\\\vect{s}, \\\\vect{t}) \\\\in \\\\cD \\\\times \\\\cD`.
Returns
-------
gradient : :class:`~openturns.Matrix`
Gradient of the function according to the parameters."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::parameterGradient
OT_CovarianceModel_parameterGradient_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_setAmplitude_doc
"Set the amplitude parameter :math:`\\\\vect{\\\\sigma}` of the covariance function.
Parameters
----------
amplitude : :class:`~openturns.Point`
The amplitude parameter :math:`\\\\vect{\\\\sigma} \\\\in \\\\Rset^d` to be used in the
covariance function.
Its size must be equal to the dimension of the covariance function."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::setAmplitude
OT_CovarianceModel_setAmplitude_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_setScale_doc
"Set the scale parameter :math:`\\\\vect{\\\\theta}` of the covariance function.
Parameters
----------
scale : :class:`~openturns.Point`
The scale parameter :math:`\\\\vect{\\\\theta} \\\\in \\\\Rset^n` to be used in the
covariance function.
Its size must be equal to the spatial dimension of the covariance function."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::setScale
OT_CovarianceModel_setScale_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_set_nugget_factor_doc
"Set the nugget factor for the regularization.
Acts on the discretized covariance matrix.
Parameters
----------
nuggetFactor : float
nugget factor to be used for the regularization of the discretized
covariance matrix."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::setNuggetFactor
OT_CovarianceModel_set_nugget_factor_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_setParameter_doc
"Set the parameters of the covariance function.
Returns
-------
parameters : :class:`~openturns.PointWithDescription`
List of the scale parameter :math:`\\\\vect{\\\\theta} \\\\in \\\\Rset^n` and the
amplitude parameter :math:`\\\\vect{\\\\sigma} \\\\in \\\\Rset^d` of the covariance
function.
Must be of dimension :math:`n+d`."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::setParameter
OT_CovarianceModel_setParameter_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_setSpatialCorrelation_doc
"Set the spatial correlation matrix :math:`\\\\mat{R}` of the covariance function.
Parameters
----------
spatialCorrelation : :class:`~openturns.CorrelationMatrix`
Correlation matrix :math:`\\\\mat{R} \\\\in \\\\cS_d^+([-1,1])`."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::setSpatialCorrelation
OT_CovarianceModel_setSpatialCorrelation_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_operator_doc
"Evaluate the covariance function.
Available usages:
__call__(s, t)
__call__(tau)
Parameters
----------
s, t : floats or sequences of float
Multivariate index :math:`(\\\\vect{s}, \\\\vect{t}) \\\\in \\\\cD \\\\times \\\\cD`.
tau : float or sequence of float
Multivariate index :math:`\\\\vect{\\\\tau} \\\\in \\\\cD`.
Returns
-------
covariance : CovarianceMatrix
The evaluation of the covariance function."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::operator()
OT_CovarianceModel_operator_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_setActiveParameter_doc
"Accessor to the active parameter set.
Parameters
----------
active : sequence of int
Indices of the active parameters."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::setActiveParameter
OT_CovarianceModel_setActiveParameter_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_getActiveParameter_doc
"Accessor to the active parameter set.
Returns
-------
active : :class:`~openturns.Indices`
Indices of the active parameters."
%enddef
%feature("docstring") OT::CovarianceModelImplementation::getActiveParameter
OT_CovarianceModel_getActiveParameter_doc
// ---------------------------------------------------------------------
%define OT_CovarianceModel_draw_doc
"Draw a specific component of the covariance model with spatial dimension 1.
Parameters
----------
rowIndex : int, :math:`0 \\\\leq rowIndex < dimension`
The row index of the component to draw. Default value is 0.
columnIndex: int, :math:`0 \\\\leq columnIndex < dimension`
The column index of the component to draw. Default value is 0.
tMin : float
The lower bound of the range over which the model is plotted. Default value is *CovarianceModel-DefaultTMin* in :class:`~openturns.ResourceMap`.
tMax : float
The upper bound of the range over which the model is plotted. Default value is *CovarianceModel-DefaultTMax* in :class:`~openturns.ResourceMap`.
pointNumber : int, :math:`pointNumber \\\\geq 2`
The discretization of the range :math:`[tMin,tMax]` over which the model is plotted. Default value is *CovarianceModel-DefaultPointNumber* in class:`~openturns.ResourceMap`.
asStationary : bool
Flag to tell if the model has to be plotted as a stationary model, ie as a function of the lag :math:`\\\\tau=t-s` if equals to *True*, or as a non-stationary model, ie as a function of :math:`(s,t)` if equals to *False*. Default value is *True*.
correlationFlag : bool
Flag to tell if the model has to be plotted as a correlation function if equals to *True* or as a covariance function if equals to *False*. Default value is *False*.
Returns
-------
graph : :class:`~openturns.Graph`
A graph containing a unique curve if *asStationary=True* and if the model is actually a stationary model, or containing the iso-values of the model if *asStationary=False* or if the model is nonstationary.
"
%enddef
%feature("docstring") OT::CovarianceModelImplementation::draw
OT_CovarianceModel_draw_doc
|