This file is indexed.

/usr/include/openturns/swig/CompositeProcess_doc.i is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
%feature("docstring") OT::CompositeProcess
"Process obtained by transformation.

Parameters
----------
fdyn : :class:`~openturns.FieldFunction`
    A field function.
inputProc : :class:`~openturns.Process`
    The input process.

Notes
-----
A composite process is the image of  process :math:`X: \\\\Omega \\\\times\\\\cD \\\\mapsto \\\\Rset^d` by the field function :math:`f_{dyn}:\\\\cD \\\\times \\\\Rset^d \\\\rightarrow \\\\cD' \\\\times \\\\Rset^q`:

.. math::

    Y = fdyn(X)


where :math:`\\\\cD \\\\in \\\\Rset^n` and  :math:`\\\\cD' \\\\in \\\\Rset^p`, defined by:

.. math::

    f_{dyn}(\\\\vect{t}, \\\\vect{x}) = (t'(\\\\vect{t}), v'(\\\\vect{t}, \\\\vect{x}))


with :math:`t': \\\\cD \\\\rightarrow \\\\cD'` and :math:`v': \\\\cD \\\\times \\\\Rset^d \\\\rightarrow \\\\Rset^q`.

The process :math:`Y: \\\\Omega \\\\times \\\\cD' \\\\rightarrow \\\\Rset^q` is defined on the domain :math:`\\\\cD'` associated to the mesh :math:`\\\\cM'`.

Examples
--------
Create the process X:

>>> import openturns as ot
>>> amplitude = [1.0, 1.0]
>>> scale = [0.2, 0.3]
>>> myCovModel = ot.ExponentialModel(scale, amplitude)
>>> myMesh = ot.IntervalMesher([100]*2).build(ot.Interval([0.0]*2, [1.0]*2))
>>> myXProcess = ot.GaussianProcess(myCovModel, myMesh)

Create a spatial field  function :math:`g_{dyn}` associated to :math:`g: \\\\Rset^2 \\\\mapsto \\\\Rset^2` where :math:`g(x_1,x_2)= (x_1^2, x_1+x_2)`:

>>> g = ot.SymbolicFunction(['x1', 'x2'],  ['x1^2', 'x1+x2'])
>>> nSpat = 2
>>> gdyn = ot.ValueFunction(g, nSpat)

Create the Y process :math:`Y = g_{dyn}(X)`:

>>> myYProcess = ot.CompositeProcess(gdyn, myXProcess)

Add the trend :math:`f_{trend}: \\\\Rset^2 \\\\mapsto \\\\Rset^2` where :math:`f_{trend}(x_1,x_2)= (1+2x_1, 1+3x_2^2)`:

>>> f = ot.SymbolicFunction(['x1', 'x2'], ['1+2*x1', '1+3*x2^2'])
>>> fTrend = ot.TrendTransform(f)

Create the process :math:`Y(\\\\omega, \\\\vect{t}) = X(\\\\omega, \\\\vect{t}) + f_{trend}(\\\\vect{t})`:

>>> myYProcess2 = ot.CompositeProcess(fTrend, myXProcess)

Apply the Box Cox transformation :math:`h=(h_1,h_2): \\\\Rset\\\\mapsto \\\\Rset^2` where :math:`h_i(x) = \\\\dfrac{x^3-1}{3}`:

>>> h = ot.BoxCoxTransform([3.0, 0.0])
>>> hBoxCox = ot.ValueFunction(h, nSpat)

Create the Y process :math:`Y = hBoxCox(X)`:

>>> myYProcess3 = ot.CompositeProcess(hBoxCox,  myXProcess)"

// ---------------------------------------------------------------------

%feature("docstring") OT::CompositeProcess::getAntecedent
"Get the antecedent process.

Returns
-------
XProcess : :class:`~openturns.Process`
    The process :math:`X`."

// ---------------------------------------------------------------------

%feature("docstring") OT::CompositeProcess::getFunction
"Get the field function.

Returns
-------
fdyn : :class:`~openturns.FieldFunction`
    The field function :math:`f_{dyn}`."