This file is indexed.

/usr/include/openturns/swig/ComplexMatrixImplementation_doc.i is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
%define OT_ComplexMatrix_doc
"Complex Matrix.

Available constructors:
    ComplexMatrix(*nr, nc*)

    ComplexMatrix(*nr, nc, values*)

Parameters
----------
nr : integer
    The number of rows of the complex matrix.
nc : integer
    The number of columns of the complex matrix.
values : sequence of complex number
    The sequence must have :math:`n_r \\\\times n_c` elements. It might be a
    :class:`~openturns.ComplexCollection` or a :class:`~openturns.ScalarCollection`. Default is (0, 0).

See also
--------
ComplexTensor

Examples
--------
>>> import openturns as ot
>>> m = ot.ComplexMatrix(2, 2, [1+2j, 3+4j , 5+6j, 7+8j])
>>> print(m)
[[ (1,2) (5,6) ]
 [ (3,4) (7,8) ]]
>>> m = ot.ComplexMatrix(2, 3, range(2*3))
>>> print(m)
[[ (0,0) (2,0) (4,0) ]
 [ (1,0) (3,0) (5,0) ]]

Create a matrix from a numpy array:

>>> import numpy as np
>>> array = np.array([[1, 2], [3, 4], [5, 6]])
>>> m = ot.ComplexMatrix(array)
>>> print(m)
[[ (1,0) (2,0) ]
 [ (3,0) (4,0) ]
 [ (5,0) (6,0) ]]
"
%enddef
%feature("docstring") OT::ComplexMatrixImplementation
OT_ComplexMatrix_doc

// ---------------------------------------------------------------------

%define OT_ComplexMatrix_clean_doc
"Clean the matrix according to a specific threshold.

Parameters
----------
threshold : positive float
    Numerical sample which is the collection of points stored by the history
    strategy."
%enddef
%feature("docstring") OT::ComplexMatrixImplementation::clean
OT_ComplexMatrix_clean_doc

// ---------------------------------------------------------------------

%define OT_ComplexMatrix_conjugate_doc
"Accessor to the conjugate complex matrix.

Returns
-------
N : :class:`~openturns.ComplexMatrix`
    The conjugate matrix :math:`\\\\mat{N}` of size :math:`n_r \\\\times n_c`
    associated with the given complex matrix :math:`\\\\mat{M}` such as
    :math:`N_{i, j} = \\\\overline{M}_{i, j}`."
%enddef
%feature("docstring") OT::ComplexMatrixImplementation::conjugate
OT_ComplexMatrix_conjugate_doc

// ---------------------------------------------------------------------

%define OT_ComplexMatrix_conjugateTranspose_doc
"Accessor to the transposed conjugate complex matrix.

Returns
-------
N : :class:`~openturns.ComplexMatrix`
    The transposed conjugate matrix :math:`\\\\mat{N}` of size :math:`n_c \\\\times n_r`
    associated with the given complex matrix :math:`\\\\mat{M}` such as
    :math:`N_{i, j} = \\\\overline{M}_{j, i}`."
%enddef
%feature("docstring") OT::ComplexMatrixImplementation::conjugateTranspose
OT_ComplexMatrix_conjugateTranspose_doc

// ---------------------------------------------------------------------

%define OT_ComplexMatrix_getNbColumns_doc
"Accessor to the number of columns.

Returns
-------
nc : integer
    The number of columns of :math:`\\\\mat{M}`."
%enddef
%feature("docstring") OT::ComplexMatrixImplementation::getNbColumns
OT_ComplexMatrix_getNbColumns_doc

// ---------------------------------------------------------------------

%define OT_ComplexMatrix_getNbRows_doc
"Accessor to the number of rows.

Returns
-------
nr : integer
    The number of rows of :math:`\\\\mat{M}`."
%enddef
%feature("docstring") OT::ComplexMatrixImplementation::getNbRows
OT_ComplexMatrix_getNbRows_doc

// ---------------------------------------------------------------------

%define OT_ComplexMatrix_imag_doc
"Accessor to the imaginary part.

Returns
-------
imat : :class:`~openturns.Matrix`
    A real matix :math:`\\\\mat{A}` of size :math:`n_r \\\\times n_c` such 
    :math:`A_{i, j} = \\\\mathrm{Im} (M_{i, j})`."
%enddef
%feature("docstring") OT::ComplexMatrixImplementation::imag
OT_ComplexMatrix_imag_doc

// ---------------------------------------------------------------------

%define OT_ComplexMatrix_isEmpty_doc
"Test whether the matrix is empty or not.

Returns
-------
isEmpty : bool
    Flag telling whether the dimensions of the matrix is zero."
%enddef
%feature("docstring") OT::ComplexMatrixImplementation::isEmpty
OT_ComplexMatrix_isEmpty_doc

// ---------------------------------------------------------------------

%define OT_ComplexMatrix_real_doc
"Accessor to the real part.

Returns
-------
rmat : :class:`~openturns.Matrix`
    A real matix :math:`\\\\mat{A}` of size :math:`n_r \\\\times n_c` such 
    :math:`A_{i, j} = \\\\mathrm{Re} (M_{i, j})`."
%enddef
%feature("docstring") OT::ComplexMatrixImplementation::real
OT_ComplexMatrix_real_doc

// ---------------------------------------------------------------------

%define OT_ComplexMatrix_transpose_doc
"Accessor to the transposed complex matrix.

Returns
-------
N : :class:`~openturns.ComplexMatrix`
    The transposed matrix :math:`\\\\mat{N}` of size :math:`n_c \\\\times n_r`
    associated with the given complex matrix :math:`\\\\mat{M}` such as
    :math:`N_{i, j} = M_{j, i}`."
%enddef
%feature("docstring") OT::ComplexMatrixImplementation::transpose
OT_ComplexMatrix_transpose_doc