/usr/include/openturns/swig/CauchyModel_doc.i is in libopenturns-dev 1.9-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 | %feature("docstring") OT::CauchyModel
"Cauchy spectral model.
Available constructors:
CauchyModel(*theta, sigma*)
Parameters
----------
theta : sequence of float
Scale coefficients :math:`\\\\theta` of the spectral density function.
Vector of size n
sigma : sequence of float
Amplitude coefficients :math:`\\\\sigma` of the spectral density function.
Vector of size p
Notes
-----
The spectral density function of input dimension **n** and output dimension **p** writes:
.. math::
\\\\forall (i,j) \\\\in [0,p-1]^2, S(f)_{i,j} = \\\\Sigma_{i,j} \\\\prod_{k=1}^{n} \\\\frac{\\\\theta_k}{1 + (2\\\\pi \\\\theta_k f)^2}
Examples
--------
>>> import openturns as ot
>>> spectralModel = ot.CauchyModel([3.0, 2.0], [2.0])
>>> f = 0.3
>>> print(spectralModel(f))
[[ (0.191364,0) ]]
>>> f = 10
>>> print(spectralModel(f))
[[ (1.71084e-07,0) ]]"
// ---------------------------------------------------------------------
%define OT_CauchyModel_computeStandardRepresentative_doc
"Compute the standard representant of the spectral density function.
Parameters
----------
tau : float
Frequency value.
Returns
-------
rho : Complex
Standard representant factor of the spectral density function.
Notes
-----
Using definitions in :class:`~openturns.SpectralModel`: the standard representative function writes:
.. math::
\\\\forall \\\\vect{f} \\\\in \\\\Rset^n, \\\\rho(\\\\vect{f} \\\\odot \\\\vect{\\\\theta}) = \\\\prod_{k=1}^{n} \\\\frac{1}{1 + (2\\\\pi \\\\theta_k f)^2}
where :math:`(\\\\vect{f} \\\\odot \\\\vect{\\\\theta})_k = \\\\vect{f}_k \\\\vect{\\\\theta}_k`"
%enddef
%feature("docstring") OT::CauchyModel::computeStandardRepresentative
OT_CauchyModel_computeStandardRepresentative_doc
// ---------------------------------------------------------------------
|