This file is indexed.

/usr/include/openturns/swig/Beta_doc.i is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
%feature("docstring") OT::Beta
"Beta distribution.

Available constructors:
    Beta(*r=2.0, t=4.0, a=-1.0, b=1.0*)

Parameters
----------
r : float
    shape parameter :math:`r > 0` with :math:`r = t * (\\\\mu - a) / (b - a)`.
t : float
    shape parameter :math:`t > r` with :math:`t = (b - \\\\mu) * (\\\\mu - a) / \\\\sigma^2 - 1`.
a : float
    Lower bound.
b : float, :math:`b > a`
    Upper bound.

Notes
-----
Its probability density function is defined as:

.. math::

    f_X(x) = \\\\frac{(x - a)^{r - 1} (b - x)^{t - r - 1}}
                  {(b - a)^{t - 1} {\\\\rm B}(r, t - r)},
                  \\\\quad x \\\\in [a, b]

with :math:`r < t` and :math:`a < b` and where :math:`\\\\rm B` denotes
Euler's beta function :class:`~openturns.SpecFunc_Beta`.

Its first moments are:

.. math::
    :nowrap:

    \\\\begin{eqnarray*}
        \\\\Expect{X} & = & a + \\\\frac{(b - a)\\\\,r}{t} \\\\\\\\
        \\\\Var{X} & = & \\\\left(\\\\frac{b - a}{t}\\\\right)^2 \\\\frac{r\\\\,(t - r)}{t + 1}
    \\\\end{eqnarray*}


It is possible to create a Beta distribution from the alternative parametrization :math:`(\\\\mu, \\\\sigma, a, b)`: see  :class:`~openturns.BetaMuSigma`. In that case, all the results are presented in that new parametrization.

In order to use the alternative  parametrization :math:`(\\\\mu, \\\\sigma, a, b)` only to create the distribution, see the example below: all the results will be presented in the native parametrization :math:`(r, t, a, b)`.

Examples
--------
Create a distribution from its native parameters :math:`(r, t, a, b)`:

>>> import openturns as ot
>>> myDist = ot.Beta(1.0, 2.0, 1.0, 5.0)

Create a it from the alternative parametrization :math:`(\\\\mu, \\\\sigma, a, b)`:

>>> myDist2 = ot.Beta()
>>> myDist2.setParameter(ot.BetaMuSigma()([3.0, 1.15, 1.0, 5.0]))

Create it from :math:`(\\\\mu, \\\\sigma, a, b)` and keep that parametrization for the remaining study: 

>>> myParam = ot.BetaMuSigma(3.0, 1.15, 1.0, 5.0)
>>> myDist3 = ot.ParametrizedDistribution(myParam)

Draw a sample:

>>> sample = myDist.getSample(5)"

// ---------------------------------------------------------------------

%feature("docstring") OT::Beta::getR
"Accessor to the distribution's shape parameter :math:`r`.

Returns
-------
r : float
    Shape parameter :math:`r`."

// ---------------------------------------------------------------------

%feature("docstring") OT::Beta::getT
"Accessor to the distribution's shape parameter :math:`t`.

Returns
-------
t : float
    Shape parameter :math:`t`."

// ---------------------------------------------------------------------

%feature("docstring") OT::Beta::getA
"Accessor to the distribution's lower bound.

Returns
-------
a : float
    Lower bound."

// ---------------------------------------------------------------------

%feature("docstring") OT::Beta::getB
"Accessor to the distribution's upper bound.

Returns
-------
b : float
    Upper bound."

// ---------------------------------------------------------------------

%feature("docstring") OT::Beta::getMu
"Accessor to the distribution's mean.

Returns
-------
mu : float
    Mean."

// ---------------------------------------------------------------------

%feature("docstring") OT::Beta::getSigma
"Accessor to the distribution's standard deviation.

Returns
-------
sigma : float, :math:`\\\\sigma > 0`
    Standard deviation."

// ---------------------------------------------------------------------

%feature("docstring") OT::Beta::setR
"Accessor to the distribution's shape parameter :math:`r`.

Parameters
----------
r : float, :math:`r > 0`
    Shape parameter :math:`r`."

// ---------------------------------------------------------------------

%feature("docstring") OT::Beta::setT
"Accessor to the distribution's shape parameter :math:`t`.

Parameters
----------
t : float, :math:`t > r`
    Shape parameter :math:`t`."

// ---------------------------------------------------------------------

%feature("docstring") OT::Beta::setA
"Accessor to the distribution's lower bound.

Parameters
----------
a : float, :math:`a < b`
    Lower bound."

// ---------------------------------------------------------------------

%feature("docstring") OT::Beta::setB
"Accessor to the distribution's upper bound.

Parameters
----------
b : float, :math:`b > a`
    Upper bound."

// ---------------------------------------------------------------------

%feature("docstring") OT::Beta::setMuSigma
"Accessor to the distribution's mean and standard deviation.

Parameters
----------
mu : float
    Mean.
sigma : float, :math:`\\\\sigma > 0`
    Standard deviation."