This file is indexed.

/usr/include/openturns/swig/BayesDistribution_doc.i is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
%feature("docstring") OT::BayesDistribution
"Bayes distribution.

Helper class for defining the distribution of the random vector :math:`(\\\\vect{X},\\\\vect{Y})` where :math:`\\\\vect{Y}` follows the distribution :math:`\\\\mathcal{L}_{\\\\vect{Y}}` and :math:`\\\\vect{X}|\\\\vect{\\\\Theta}` follows the distribution :math:`\\\\mathcal{L}_{\\\\vect{X}|\\\\vect{\\\\Theta}}`  where :math:`\\\\vect{\\\\Theta}=g(\\\\vect{Y})` with :math:`g` a given function of input dimension the dimension of :math:`\\\\mathcal{L}_{\\\\vect{Y}}` and output dimension the dimension of :math:`\\\\vect{\\\\Theta}`.

Available constructors:
   BayesDistribution(*conditionedDist, conditioningDist, linkFunction*)

   BayesDistribution(*conditionedDist, conditioningDist*)

   BayesDistribution()

Parameters
----------

conditionedDist : :class:`~openturns.Distribution`, the distribution of :math:`\\\\vect{X}|\\\\vect{\\\\Theta}`, whose parameters will be overwritten by :math:`g(\\\\vect{Y})`.
    In the `BayesDistribution()` constructor, `conditionedDist` is taken equal to :math:`\\\\vect{X} | \\\\vect{\\\\Theta} \\\\sim` :class:`~openturns.Uniform` :math:`(\\\\vect{\\\\Theta})`.

conditioningDist : :class:`~openturns.Distribution`, the distribution of :math:`\\\\vect{Y}`, specified with its parameters.
    In the `BayesDistribution()` constructor,  `conditioningDist` is taken equal to :math:`\\\\vect{Y} \\\\sim Uniform(-1,1)`.

linkFunction : :class:`~openturns.Function`, the function :math:`g: \\\\Rset^p \\\\rightarrow \\\\Rset^q`, where :math:`p` is the dimension of `conditioningDist` and :math:`q` is the dimension of :math:`\\\\vect{\\\\Theta}`.
    In the `BayesDistribution()` constructor, `linkFunction`  is taken equal to :math:`g: \\\\Rset \\\\rightarrow \\\\Rset^2`, :math:`g(y)=(y,y+1)`.
    In the `BayesDistribution(conditionedDist, conditioningDist)` constructor, we need :math:`p=q` and `linkFunction`  is taken equal to  :math:`g(\\\\vect{y})=\\\\vect{y}`.


Notes
-----
Its probability density function is defined as:

.. math::

    f_{(\\\\vect{X}, \\\\vect{Y})}(\\\\vect{x}, \\\\vect{y}) = f_{\\\\vect{X}|\\\\vect{\\\\Theta}=g(\\\\vect{y})}(\\\\vect{x}|g(\\\\vect{y})) f_{\\\\vect{Y}}( \\\\vect{y})

with  :math:`f_{\\\\vect{X}|\\\\vect{\\\\Theta}=g(\\\\vect{y})}` the PDF of the distribution of :math:`\\\\vect{X}|\\\\vect{\\\\Theta}`, where :math:`\\\\vect{\\\\Theta}` has been replaced by :math:`g(\\\\vect{y})`, :math:`f_{\\\\vect{Y}}` the PDF of :math:`\\\\vect{Y}` and :math:`g` the linking function.

With the default constructor, the resulting random vector :math:`(X,Y)` is uniformly distributed on the parallelogram which vertices are :math:`(-1,-1); (0,-1); (2,1); (1,1)`.


Examples
--------
Create a distribution:

>>> import openturns as ot
>>> conditioningDist = ot.Normal(0.0, 1.0)
>>> g = ot.SymbolicFunction(['y'], ['y', '0.1+y^2'])
>>> conditionedDist = ot.Normal()
>>> finalDist = ot.ConditionalDistribution(conditionedDist, conditioningDist, g)

Draw a sample:

>>> sample = finalDist.getSample(5)
"

// ---------------------------------------------------------------------

%feature("docstring") OT::BayesDistribution::getConditionedDistribution
"Accessor to the distribution's conditioned distribution parameter `conditionedDistribution`.

Returns
-------
conditionedDistribution : :class:`~openturns.Distribution`, the distribution of :math:`\\\\vect{X}|\\\\vect{\\\\Theta}`, whose parameters will be overwritten by :math:`g(\\\\vect{Y})`.
"

// ---------------------------------------------------------------------

%feature("docstring") OT::BayesDistribution::getConditioningDistribution
"Accessor to the distribution's conditioned distribution parameter `conditioningDistribution`.

Returns
-------
conditioningDistribution : :class:`~openturns.Distribution`, the distribution of :math:`\\\\vect{Y}`, specified with its parameters.
"
// ---------------------------------------------------------------------

%feature("docstring") OT::BayesDistribution::getLinkFunction
"Accessor to the distribution's conditioned distribution parameter `linkFunction`.

Returns
-------
linkFunction : :class:`~openturns.Function`, the function :math:`g: \\\\Rset^p \\\\rightarrow \\\\Rset^q`, where :math:`p` is the dimension of `conditioningDist` and :math:`q` is the dimension of :math:`\\\\vect{\\\\Theta}`.
"

// ---------------------------------------------------------------------

%feature("docstring") OT::BayesDistribution::setConditionedDistribution
"Accessor to the distribution's conditioned distribution parameter `conditionedDistribution`.

Parameters
----------
conditionedDistribution : :class:`~openturns.Distribution`, the distribution of :math:`\\\\vect{X}|\\\\vect{\\\\Theta}`, whose parameters will be overwritten by :math:`g(\\\\vect{Y})`.
"

// ---------------------------------------------------------------------

%feature("docstring") OT::BayesDistribution::setConditioningDistribution
"Accessor to the distribution's conditioned distribution parameter `conditioningDistribution`.

Parameters
----------
conditioningDistribution : :class:`~openturns.Distribution`, the distribution of :math:`\\\\vect{Y}`, specified with its parameters.
"
// ---------------------------------------------------------------------

%feature("docstring") OT::BayesDistribution::setLinkFunction
"Accessor to the distribution's conditioned distribution parameter `linkFunction`.

Parameters
----------
linkFunction : :class:`~openturns.Function`, the function :math:`g: \\\\Rset^p \\\\rightarrow \\\\Rset^q`, where :math:`p` is the dimension of `conditioningDist` and :math:`q` is the dimension of :math:`\\\\vect{\\\\Theta}`.
"