/usr/include/openturns/swig/BayesDistribution_doc.i is in libopenturns-dev 1.9-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 | %feature("docstring") OT::BayesDistribution
"Bayes distribution.
Helper class for defining the distribution of the random vector :math:`(\\\\vect{X},\\\\vect{Y})` where :math:`\\\\vect{Y}` follows the distribution :math:`\\\\mathcal{L}_{\\\\vect{Y}}` and :math:`\\\\vect{X}|\\\\vect{\\\\Theta}` follows the distribution :math:`\\\\mathcal{L}_{\\\\vect{X}|\\\\vect{\\\\Theta}}` where :math:`\\\\vect{\\\\Theta}=g(\\\\vect{Y})` with :math:`g` a given function of input dimension the dimension of :math:`\\\\mathcal{L}_{\\\\vect{Y}}` and output dimension the dimension of :math:`\\\\vect{\\\\Theta}`.
Available constructors:
BayesDistribution(*conditionedDist, conditioningDist, linkFunction*)
BayesDistribution(*conditionedDist, conditioningDist*)
BayesDistribution()
Parameters
----------
conditionedDist : :class:`~openturns.Distribution`, the distribution of :math:`\\\\vect{X}|\\\\vect{\\\\Theta}`, whose parameters will be overwritten by :math:`g(\\\\vect{Y})`.
In the `BayesDistribution()` constructor, `conditionedDist` is taken equal to :math:`\\\\vect{X} | \\\\vect{\\\\Theta} \\\\sim` :class:`~openturns.Uniform` :math:`(\\\\vect{\\\\Theta})`.
conditioningDist : :class:`~openturns.Distribution`, the distribution of :math:`\\\\vect{Y}`, specified with its parameters.
In the `BayesDistribution()` constructor, `conditioningDist` is taken equal to :math:`\\\\vect{Y} \\\\sim Uniform(-1,1)`.
linkFunction : :class:`~openturns.Function`, the function :math:`g: \\\\Rset^p \\\\rightarrow \\\\Rset^q`, where :math:`p` is the dimension of `conditioningDist` and :math:`q` is the dimension of :math:`\\\\vect{\\\\Theta}`.
In the `BayesDistribution()` constructor, `linkFunction` is taken equal to :math:`g: \\\\Rset \\\\rightarrow \\\\Rset^2`, :math:`g(y)=(y,y+1)`.
In the `BayesDistribution(conditionedDist, conditioningDist)` constructor, we need :math:`p=q` and `linkFunction` is taken equal to :math:`g(\\\\vect{y})=\\\\vect{y}`.
Notes
-----
Its probability density function is defined as:
.. math::
f_{(\\\\vect{X}, \\\\vect{Y})}(\\\\vect{x}, \\\\vect{y}) = f_{\\\\vect{X}|\\\\vect{\\\\Theta}=g(\\\\vect{y})}(\\\\vect{x}|g(\\\\vect{y})) f_{\\\\vect{Y}}( \\\\vect{y})
with :math:`f_{\\\\vect{X}|\\\\vect{\\\\Theta}=g(\\\\vect{y})}` the PDF of the distribution of :math:`\\\\vect{X}|\\\\vect{\\\\Theta}`, where :math:`\\\\vect{\\\\Theta}` has been replaced by :math:`g(\\\\vect{y})`, :math:`f_{\\\\vect{Y}}` the PDF of :math:`\\\\vect{Y}` and :math:`g` the linking function.
With the default constructor, the resulting random vector :math:`(X,Y)` is uniformly distributed on the parallelogram which vertices are :math:`(-1,-1); (0,-1); (2,1); (1,1)`.
Examples
--------
Create a distribution:
>>> import openturns as ot
>>> conditioningDist = ot.Normal(0.0, 1.0)
>>> g = ot.SymbolicFunction(['y'], ['y', '0.1+y^2'])
>>> conditionedDist = ot.Normal()
>>> finalDist = ot.ConditionalDistribution(conditionedDist, conditioningDist, g)
Draw a sample:
>>> sample = finalDist.getSample(5)
"
// ---------------------------------------------------------------------
%feature("docstring") OT::BayesDistribution::getConditionedDistribution
"Accessor to the distribution's conditioned distribution parameter `conditionedDistribution`.
Returns
-------
conditionedDistribution : :class:`~openturns.Distribution`, the distribution of :math:`\\\\vect{X}|\\\\vect{\\\\Theta}`, whose parameters will be overwritten by :math:`g(\\\\vect{Y})`.
"
// ---------------------------------------------------------------------
%feature("docstring") OT::BayesDistribution::getConditioningDistribution
"Accessor to the distribution's conditioned distribution parameter `conditioningDistribution`.
Returns
-------
conditioningDistribution : :class:`~openturns.Distribution`, the distribution of :math:`\\\\vect{Y}`, specified with its parameters.
"
// ---------------------------------------------------------------------
%feature("docstring") OT::BayesDistribution::getLinkFunction
"Accessor to the distribution's conditioned distribution parameter `linkFunction`.
Returns
-------
linkFunction : :class:`~openturns.Function`, the function :math:`g: \\\\Rset^p \\\\rightarrow \\\\Rset^q`, where :math:`p` is the dimension of `conditioningDist` and :math:`q` is the dimension of :math:`\\\\vect{\\\\Theta}`.
"
// ---------------------------------------------------------------------
%feature("docstring") OT::BayesDistribution::setConditionedDistribution
"Accessor to the distribution's conditioned distribution parameter `conditionedDistribution`.
Parameters
----------
conditionedDistribution : :class:`~openturns.Distribution`, the distribution of :math:`\\\\vect{X}|\\\\vect{\\\\Theta}`, whose parameters will be overwritten by :math:`g(\\\\vect{Y})`.
"
// ---------------------------------------------------------------------
%feature("docstring") OT::BayesDistribution::setConditioningDistribution
"Accessor to the distribution's conditioned distribution parameter `conditioningDistribution`.
Parameters
----------
conditioningDistribution : :class:`~openturns.Distribution`, the distribution of :math:`\\\\vect{Y}`, specified with its parameters.
"
// ---------------------------------------------------------------------
%feature("docstring") OT::BayesDistribution::setLinkFunction
"Accessor to the distribution's conditioned distribution parameter `linkFunction`.
Parameters
----------
linkFunction : :class:`~openturns.Function`, the function :math:`g: \\\\Rset^p \\\\rightarrow \\\\Rset^q`, where :math:`p` is the dimension of `conditioningDist` and :math:`q` is the dimension of :math:`\\\\vect{\\\\Theta}`.
"
|