/usr/include/openturns/swig/AdaptiveDirectionalSampling_doc.i is in libopenturns-dev 1.9-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 | %feature("docstring") OT::AdaptiveDirectionalSampling
"Adaptative directional simulation.
Parameters
----------
event : :class:`~openturns.Event`
Event we are computing the probability of.
rootStrategy : :class:`~openturns.RootStrategy`, optional
Strategy adopted to evaluate the intersections of each direction with the
limit state function and take into account the contribution of the
direction to the event probability.
Set to :class:`~openturns.SafeAndSlow` by default.
samplingStrategy : :class:`~openturns.SamplingStrategy`, optional
Strategy adopted to sample directions.
Set to :class:`~openturns.RandomDirection` by default.
Notes
-----
Let :math:`\\\\mathcal D_f` denote the failure domain defined as
:math:`\\\\mathcal D_f = \\\\{\\\\ux \\\\in \\\\mathbb R^{n_X} | g(\\\\ux) \\\\leq 0\\\\}`, where
:math:`\\\\ux` are realization of the random vector :math:`\\\\uX` and :math:`g` is the limit-state
function as defined elsewhere in the documentation.
The purpose of the ADS-2 algorithm and its variants is to estimate the
following probability:
.. math::
P_f = \\\\int_{\\\\mathcal D_f} f_{\\\\uX}(\\\\ux)\\\\di{\\\\ux} \\\\\\\\
= \\\\int_{\\\\mathbb R^{n_X}} \\\\mathbf{1}_{\\\\{g(\\\\ux) \\\\:\\\\leq 0\\\\: \\\\}}\\\\,f_{\\\\uX}(\\\\ux)\\\\di{\\\\ux} \\\\\\\\
= \\\\Prob{\\\\{g(\\\\uX) \\\\leq 0\\\\}}.
Principles
The ADS-2 method [Munoz2011]_ combines the stratified and directional sampling concepts.
Stratified sampling consists in splitting the support of the random vector
:math:`\\\\ux` into :math:`m` mutually exclusive and collectively exhaustive subsets.
Here, ADS-2 splits the standard space into :math:`m = 2^d` quadrants, where
:math:`d` is the dimension of the random vector :math:`\\\\uX`.
Stratified sampling is often run in two steps: (i) a learning step is used for
polling the input space and detect the subsets that contribute most to the
probability and (ii) an estimation step is used for estimating
the probability by weighted sampling (some subsets are more sampled than the others).
Directional sampling uses the spheric symmetry of the standard space for
estimating the failure probability as the average of conditional probabilities
calculated on directions drawn at random in the standard space.
The learning step uses an a priori number of random directions that is
uniformly distributed over the quadrants, meaning the weights are as follows:
.. math::
\\\\omega^1_i = \\\\frac{1}{m}, \\\\quad i = 1, \\\\ldots, m.
Directional sampling is used for estimating the failure probability in each quadrant:
.. math::
\\\\hat P_i^{DS} = \\\\Prob{\\\\{g(\\\\uX) \\\\leq 0\\\\} \\\\mid \\\\uX \\\\in \\\\mathbb{Q}_i},\\\\,i = 1, \\\\ldots, m.
and the corresponding estimation variances are denoted as :math:`\\\\sigma_i^{DS\\\\,2}`.
These probabilities are estimated using the same number :math:`N^0_i` of random
directions per quadrant as told by the uniform weights distribution.
The probability of interest is then computed as a weighted average of the
previously defined conditional probabilities:
.. math::
\\\\hat P_f = \\\\sum\\\\limits_{i=1}^m \\\\omega_i \\\\hat P_i^{DS}
where :math:`\\\\hat P_i^{DS}` is the conditional probability estimator in the i-th quadrant. The corresponding variance of the stratified estimator reads:
.. math::
\\\\sigma^2 = \\\\frac{1}{N_l} \\\\left( \\\\sum\\\\limits_{i=1}^m \\\\omega_i \\\\sigma_i^{DS} \\\\right) ^2
where :math:`\\\\sigma_i^{DS\\\\,2}` is the variance of the conditional probability
estimator in the i-th quadrant.
At the end of the learning step, the weights :math:`\\\\omega_i` are updated so
as to minimize the stratified estimator variance.
Indeed, it can be shown that the updated weights:
.. math::
\\\\omega^2_i = \\\\frac{\\\\omega^1_i \\\\sigma_i^{DS}}{\\\\sum\\\\limits_{j=1}^m \\\\omega^1_j \\\\sigma_j^{DS}}, i = 1, \\\\ldots, m,
minimize the final estimation variance in \\\\eqref{eq:pf_est_sda2_var}.
Note that some weights might be zero (due to a somewhat arbitrary rounding of
the conditional probabilities' estimation variance). The quadrants associated
with a zero-weight will not be sampled in the estimation step.
Eventually, the estimation step proceeds in essentially the same way as the
learning step with different weights for the quadrants though.
\\\\eqref{eq:pf_est_sda2} and \\\\eqref{eq:pf_est_sda2_var} are used for evaluating
the final probability probability estimate and its variance.
The computational budget per step is parametrized by a fraction
:math:`\\\\gamma_l, l = 1,\\\\,2` of the total budget :math:`N`, such that :math:`\\\\gamma_1 + \\\\gamma_2 = 1`.
The number of directions sampled in quadrant :math:`i` at step :math:`l` is then defined as follows:
.. math::
N^l_i = N * \\\\gamma_l * \\\\omega_i.
The number of evaluation of the limit-state function :math:`g` is of course
greater than the total budget :math:`N` since directional sampling is used.
Variants
The ADS-2+ variant performs a dimension reduction step after the learning step
for reducing the number of stratified quadrants. The statistic :math:`\\\\tilde T_k`
aggregates the sensitivity of expectation along dimension :math:`k`.
It is defined as follows:
.. math::
\\\\tilde T_k = \\\\sum\\\\limits_{i_l \\\\in \\\\lbrace -1,1 \\\\rbrace,l \\\\neq k} \\\\lvert \\\\tilde I_{(i_1,\\\\dots,i_{k-1},-1,i_{k+1},\\\\dots,i_p)} - \\\\tilde I_{(i_1,\\\\dots,i_{k-1},1,i_{k+1},\\\\dots,i_p)} \\\\rvert.
It is used for ranking the contributions of the quadrants.
Then, only the :math:`d' < d` most influential variables according to
:math:`\\\\tilde T_k` are stratified, leaving the remaining variables simulated without
stratification. The corresponding quadrants will not be sampled.
The DP-ADS-2 variant combines the ADS method with a rotation of the quadrants.
The idea is to get a possible design point (available e.g. after a
preliminary FORM analysis) on the bisector of one of the quadrants to make the
stratification even more efficient and thus save some evaluations of the model.
This 2-step algorithm can be generalized to :math:`L > 2` steps by adding more
than one learning step. For now, only ADS-2 is implemented.
See also
--------
Simulation"
// ---------------------------------------------------------------------
%feature("docstring") OT::AdaptiveDirectionalSampling::getRootStrategy
"Get the root strategy.
Returns
-------
strategy : :class:`~openturns.RootStrategy`
Root strategy adopted."
// ---------------------------------------------------------------------
%feature("docstring") OT::AdaptiveDirectionalSampling::setRootStrategy
"Set the root strategy.
Parameters
----------
strategy : :class:`~openturns.RootStrategy`
Root strategy adopted."
// ---------------------------------------------------------------------
%feature("docstring") OT::AdaptiveDirectionalSampling::getSamplingStrategy
"Get the direction sampling strategy.
Returns
-------
strategy : :class:`~openturns.SamplingStrategy`
Direction sampling strategy adopted."
// ---------------------------------------------------------------------
%feature("docstring") OT::AdaptiveDirectionalSampling::setSamplingStrategy
"Set the direction sampling strategy.
Parameters
----------
strategy : :class:`~openturns.SamplingStrategy`
Direction sampling strategy adopted."
// ---------------------------------------------------------------------
%feature("docstring") OT::AdaptiveDirectionalSampling::setPartialStratification
"Partial stratification accessor.
Parameters
----------
partialStratification : bool
Partial stratification."
// ---------------------------------------------------------------------
%feature("docstring") OT::AdaptiveDirectionalSampling::getPartialStratification
"Partial stratification accessor.
Returns
-------
partialStratification : bool
Partial stratification."
// ---------------------------------------------------------------------
%feature("docstring") OT::AdaptiveDirectionalSampling::setQuadrantOrientation
"Quadrant orientation accessor.
Parameters
----------
orientation : sequence of float
Quadrant orientation."
// ---------------------------------------------------------------------
%feature("docstring") OT::AdaptiveDirectionalSampling::getQuadrantOrientation
"Quadrant orientation accessor.
Returns
-------
orientation : :class:`~openturns.Point`
Quadrant orientation."
// ---------------------------------------------------------------------
%feature("docstring") OT::AdaptiveDirectionalSampling::setMaximumStratificationDimension
"Maximum stratification dimension accessor.
Parameters
----------
max : int
Maximum stratification dimension."
// ---------------------------------------------------------------------
%feature("docstring") OT::AdaptiveDirectionalSampling::getMaximumStratificationDimension
"Maximum stratification dimension accessor.
Returns
-------
max : int
Maximum stratification dimension."
// ---------------------------------------------------------------------
%feature("docstring") OT::AdaptiveDirectionalSampling::setGamma
"Gamma accessor.
The computational budget per step :math:`\\\\gamma_l`.
Parameters
----------
gamma : sequence of float
Gamma value."
// ---------------------------------------------------------------------
%feature("docstring") OT::AdaptiveDirectionalSampling::getGamma
"Gamma accessor.
The computational budget per step :math:`\\\\gamma_l`.
Returns
-------
gamma : :class:`~openturns.Point`
Gamma value."
// ---------------------------------------------------------------------
%feature("docstring") OT::AdaptiveDirectionalSampling::getTStatistic
"T statistic accessor.
The statistic :math:`\\\\tilde T_k` aggregates the sensitivity of expectation.
Returns
-------
gamma : :class:`~openturns.Point`
T statistic value."
|