This file is indexed.

/usr/include/openturns/swig/ARMA_doc.i is in libopenturns-dev 1.9-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
%feature("docstring") OT::ARMA
"ARMA process.

Available constructors:
    ARMA()

    ARMA(*ARCoeff, MACoeff, whiteNoise*)

    ARMA(*ARCoeff, MACoeff, whiteNoise, ARMAstate*)
   

Parameters
----------
ARCoeff : :class:`~openturns.ARMACoefficients`
    The coefficients of the AR part of the recurrence : :math:`(a_1, \\\\hdots, a_p)` in dimension 1 and :math:`(\\\\mat{A}_{\\\\, 1}, \\\\hdots, \\\\mat{A}{\\\\, _p})` in dimension :math:`d`.

    Default is: :math:`0` in dimension 1 and the associated time grid is :math:`\\\\{0,1\\\\}`.
MACoeff :  :class:`~openturns.ARMACoefficients`
    The coefficients of the MA part of the recurrence : :math:`(b_1, \\\\hdots, b_q)` in dimension 1 and :math:`(\\\\mat{B}_{\\\\, 1}, \\\\hdots, \\\\mat{B}{\\\\, _p})` in dimension :math:`d`.

    Default is: :math:`0` in dimension 1 and the associated time grid is :math:`\\\\{0,1\\\\}`.
whiteNoise : :class:`~openturns.WhiteNoise`
    The white noise distribution of the recurrent relation.

    Default is: the Normal distribution with zero mean and unit variance in dimension 1.
ARMAstate : :class:`~openturns.ARMAState`
    The state of the ARMA process which will be extended to the next time stamps. The state  is composed with :math:`p` values of the process and :math:`q` values of the white noise. This constructor is needed to get possible futurs from the current state.


Notes
-----
An ARMA process in dimension :math:`d` is defined by the linear recurrence :

.. math::

    \\\\vect{X}_t + \\\\mat{A}_{\\\\, 1}   \\\\,  \\\\vect{X}_{t-1} + \\\\hdots +  \\\\mat{A}_{\\\\, p} \\\\,   \\\\vect{X}_{t-p} = \\\\vect{\\\\varepsilon}_{t}+  \\\\mat{B}_ {\\\\, 1} \\\\,   \\\\vect{\\\\varepsilon}_{t-1}+   \\\\hdots + \\\\mat{B}_{\\\\, q}  \\\\,  \\\\vect{\\\\varepsilon}_{t-q}

where :math:`\\\\mat{A}_{\\\\, i} \\\\in  \\\\Rset^d \\\\times \\\\Rset^d` and :math:`\\\\mat{B}_{\\\\, j} \\\\in  \\\\Rset^d \\\\times \\\\Rset^d`.

In dimension 1, an ARMA process is defined by:

.. math::

    X_t +a_1  X_{t-1} + \\\\hdots +  a_p X_{t-p} = \\\\varepsilon_{t}+  b_1 \\\\varepsilon_{t-1}+   \\\\hdots +b_q \\\\varepsilon_{t-q}


where :math:`(a_i,b_i) \\\\in \\\\Rset`.

Examples
--------
Create an ARMA(4,2) process:

>>> import openturns as ot
>>> myTimeGrid = ot.RegularGrid(0.0, 0.1, 10)
>>> myWhiteNoise = ot.WhiteNoise(ot.Triangular(-1.0, 0.0, 1.0), myTimeGrid)
>>> myARCoef = ot.ARMACoefficients([0.4, 0.3, 0.2, 0.1])
>>> myMACoef = ot.ARMACoefficients([0.4, 0.3])
>>> myARMAProcess = ot.ARMA(myARCoef, myMACoef, myWhiteNoise)

>>> myLastValues = ot.Sample([[0.6], [0.7], [0.3], [0.2]])
>>> myLastNoiseValues = ot.Sample([[1.2], [1.8]])
>>> myARMAState = ot.ARMAState(myLastValues, myLastNoiseValues)
>>> myARMAProcessWithState = ot.ARMA(myARCoef, myMACoef, myWhiteNoise, myARMAState)

Generate a realization:

>>> myTimeSeries = myARMAProcess.getContinuousRealization()"

// ---------------------------------------------------------------------

%feature("docstring") OT::ARMA::getARCoefficients
"Accessor to the AR coefficients of the ARMA process.

Returns
-------
ARCoeff : :class:`~openturns.ARMACoefficients`
    The AR coefficients of the linear recurrence defining the process."

// ---------------------------------------------------------------------

%feature("docstring") OT::ARMA::setARCoefficients
"Accessor to the AR coefficients of the ARMA process.

Parameters
----------
ARCoeff : :class:`~openturns.ARMACoefficients`
    The AR coefficients of the linear recurrence defining the process."

// ---------------------------------------------------------------------

%feature("docstring") OT::ARMA::getMACoefficients
"Accessor to the MA coefficients of the ARMA process.

Returns
-------
MACoeff : :class:`~openturns.ARMACoefficients`
    The MA coefficients of the linear recurrence defining the process."

// ---------------------------------------------------------------------

%feature("docstring") OT::ARMA::setMACoefficients
"Accessor to the MA coefficients of the ARMA process.

Parameters
----------
MACoeff : :class:`~openturns.ARMACoefficients`
    The MA coefficients of the linear recurrence defining the process."

// ---------------------------------------------------------------------

%feature("docstring") OT::ARMA::getFuture
"Get possible futures from the current state of the ARMA process.

Parameters
----------
Nit : int, :math:`N_{it} \\\\geq 1`
    The number of time stamps of the future.

Nreal : int, :math:`N_{real} \\\\geq 1`
    The number of possible futures that are generated. 

    Default is: :math:`N_{real} = 1`.

Notes
-----

- If :math:`N_{real} = 1`:

A :class:`~openturns.TimeSeries`
    One possible future of the ARMA process, from the current state over the next :math:`N_{it}` time stamps.


- If :math:`N_{real} > 1`:

A :class:`~openturnsProcessSample`
    :math:`N_{real}`  possible futures of the ARMA process, from the current state over the next :math:`N_{it}` time stamps.

Note that the time grid of each future begins at the last time stamp of the time grid associated to the time series which is extended."


// ---------------------------------------------------------------------

%feature("docstring") OT::ARMA::getState
"Accessor to the stored state of the ARMA process.

Returns
-------
ARMAstate : :class:`~openturns.ARMAState`
    The state of the ARMA process which will be extended to the next time stamps. The state  is composed with :math:`p` values of the process and :math:`q` values of the white noise."

// ---------------------------------------------------------------------

%feature("docstring") OT::ARMA::setState
"Accessor to the stored state of the ARMA process.

Parameters
----------
ARMAstate : :class:`~openturns.ARMAState`
    The state of the ARMA process which will be extended to the next time stamps. The state  is composed with :math:`p` values of the process and :math:`q` values of the white noise."

// ---------------------------------------------------------------------

%feature("docstring") OT::ARMA::getWhiteNoise
"Accessor to the white noise defining the ARMA process.

Returns
-------
whiteNoise : :class:`~openturns.WhiteNoise`
    The white noise :math:`\\\\varepsilon` used in the linear recurrence of the ARMA process."

// ---------------------------------------------------------------------

%feature("docstring") OT::ARMA::setWhiteNoise
"Accessor to the white noise defining the ARMA process.

Parameters
----------
whiteNoise : :class:`~openturns.WhiteNoise`
    The white noise :math:`\\\\varepsilon` used in the linear recurrence of the ARMA process."

// ---------------------------------------------------------------------

%feature("docstring") OT::ARMA::computeNThermalization
"Accessor to the stored state of the ARMA process.

Parameters
----------
eps : float, :math:`\\\\epsilon > 0`


Returns
-------
Nther : int, :math:`N_{ther} \\\\geq 1`
    The number of iterations of the ARMA process before being stationary and independent of its intial state.

Notes
-----
The thermalization number :math:`N_{ther}` is defined as follows:

.. math::

    N_{ther} > E\\\\left[ \\\\displaystyle \\\\frac{\\\\ln \\\\epsilon}{\\\\ln \\\\max_{i,j} |r_{ij}|}\\\\right]

where :math:`E[]` is the integer part of a float and the :math:`(r_i)_i` are the roots of the polynomials (given here in dimension 1) :

.. math::

   \\\\Phi(\\\\vect{r}) = \\\\vect{r}^p + \\\\sum_{i=1}^p a_i\\\\vect{r}^{p-i}

"
// ---------------------------------------------------------------------

%feature("docstring") OT::ARMA::getNThermalization
"Accessor to the number of time stamps used to thermalize the process.

Returns
-------
Nther : int, :math:`N_{ther} \\\\geq 1`
    The number of time stamps used to make the ARMA realization be independent from its actual state.

    Default precision is: :math:`\\\\varepsilon = 2^{-53} \\\\equiv 10^{-16}`."

// ---------------------------------------------------------------------

%feature("docstring") OT::ARMA::setNThermalization
"Accessor to the number of time stamps used to thermalize the process.

Parameters
----------
Nther : int, :math:`N_{ther} \\\\geq 1`
    The number of time stamps used to make the ARMA realization independent from its actual state."