/usr/include/openturns/GaussKronrod.hxx is in libopenturns-dev 1.9-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 | // -*- C++ -*-
/**
* @brief This class allows to compute integrals of a function over an interval
* using GaussKronrod method for 1D scalar function
*
* Copyright 2005-2017 Airbus-EDF-IMACS-Phimeca
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef OPENTURNS_GAUSSKRONROD_HXX
#define OPENTURNS_GAUSSKRONROD_HXX
#include "openturns/IntegrationAlgorithmImplementation.hxx"
#include "openturns/GaussKronrodRule.hxx"
BEGIN_NAMESPACE_OPENTURNS
/**
* @class GaussKronrod
*/
class OT_API GaussKronrod
: public IntegrationAlgorithmImplementation
{
CLASSNAME;
public:
/** Default constructor without parameters */
GaussKronrod();
/** Parameter constructor */
GaussKronrod(const UnsignedInteger maximumSubIntervals,
const Scalar maximumError,
const GaussKronrodRule & rule);
/** Virtual copy constructor */
virtual GaussKronrod * clone() const;
/** Compute an approximation of \int_{[a,b]}f(x)dx, where [a,b]
* is an 1D interval
*/
using IntegrationAlgorithmImplementation::integrate;
#ifndef SWIG
virtual Point integrate(const Function & function,
const Interval & interval,
Scalar & error) const;
// This method allows to get the estimated integration error as a scalar
virtual Point integrate(const Function & function,
const Scalar a,
const Scalar b,
Scalar & error,
Point & ai,
Point & bi,
Sample & fi,
Point & ei) const;
#endif
// This method allows to get the estimated integration error as a Point,
// needed by Python
virtual Point integrate(const Function & function,
const Scalar a,
const Scalar b,
Point & error,
Point & ai,
Point & bi,
Sample & fi,
Point & ei) const;
/** Maximum sub-intervals accessor */
UnsignedInteger getMaximumSubIntervals() const;
void setMaximumSubIntervals(const UnsignedInteger maximumSubIntervals);
/** Maximum error accessor */
Scalar getMaximumError() const;
void setMaximumError(const Scalar maximumError);
/** Rule accessor */
GaussKronrodRule getRule() const;
void setRule(const GaussKronrodRule & rule);
/** String converter */
virtual String __repr__() const;
/** String converter */
virtual String __str__(const String & offset = "") const;
private:
/** Compute the local GaussKronrod rule over [a, b] */
Point computeRule(const Function & function,
const Scalar a,
const Scalar b,
Scalar & localError) const;
/* Maximum number of sub-intervals */
UnsignedInteger maximumSubIntervals_;
/* Maximum estimated error */
Scalar maximumError_;
/* Local integration rule */
GaussKronrodRule rule_;
} ; /* class GaussKronrod */
END_NAMESPACE_OPENTURNS
#endif /* OPENTURNS_GAUSSKRONROD_HXX */
|