/usr/include/openturns/Function.hxx is in libopenturns-dev 1.9-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 | // -*- C++ -*-
/**
* @brief The class that implements numerical math functions
*
* Copyright 2005-2017 Airbus-EDF-IMACS-Phimeca
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef OPENTURNS_FUNCTION_HXX
#define OPENTURNS_FUNCTION_HXX
#include "openturns/TypedInterfaceObject.hxx"
#include "openturns/FunctionImplementation.hxx"
#include "openturns/ProductFunction.hxx"
#include "openturns/ComparisonOperator.hxx"
#include "openturns/Collection.hxx"
BEGIN_NAMESPACE_OPENTURNS
/**
* @class Function
* @brief Simulates a numerical math function
*
* The class that simulates a numerical math function,
* its gradient and its hessian. This class is just an interface
* to actual implementation objects that can be hot-replaced
* during computation. Each implementation object refers to
* the function, the gradient or the hessian.
* @see FunctionImplementation
*/
class OT_API Function
: public TypedInterfaceObject<FunctionImplementation>
{
CLASSNAME;
public:
/* Some typedefs for easy reading */
typedef Collection<Function> FunctionCollection;
typedef FunctionImplementation::EvaluationPointer EvaluationPointer;
typedef FunctionImplementation::GradientPointer GradientPointer;
typedef FunctionImplementation::HessianPointer HessianPointer;
/** Default constructor */
Function();
/** Constructor from FunctionImplementation */
Function(const FunctionImplementation & implementation);
#ifndef SWIG
/** Constructor from implementation */
Function(const Implementation & p_implementation);
/** Constructor from implementation pointer */
Function(FunctionImplementation * p_implementation);
#endif
/** Constructor from evaluation implementation */
Function(const EvaluationImplementation & evaluation);
/** @brief Composition constructor
*
* Builds a new %Function from two others as if they were mathematicaly composed,
*
* Example: h = f o g
* - f is the left %Function
* - g is the right %Function
* - h is the composed %Function
* .
* The condition for successful composition is that the dimension of the output of g is the dimension
* of the input of f. The composed %Function has the input dimension of g and the output dimension
* of f.
* @param left The left %Function (aka f)
* @param right The right %Function (aka g)
*/
Function(const Function & left,
const Function & right);
/** @brief Analytical formula constructor
*
* Builds a new %Function by analytical expression parsing. The expression involving the input
* variables (stored in \e inputVariablesNames) to produce the output variables (stored in \e outputVariablesNames)
* are described in \e formulas.
*
* The input dimension of the new %Function is the size of \e inputVariablesNames and
* the output dimension of the new %Function is the size of \e outputVariablesName.
* @param inputVariablesNames The ordered collection of input variables names
* @param outputVariablesNames The ordered collection of output variables names
* @param formulas The ordered collection of analytical expressions to compute the output variables
*/
Function(const Description & inputVariablesNames,
const Description & outputVariablesNames,
const Description & formulas);
/** Same as the previous one, but with default names for the output variables
* @deprecated */
Function(const Description & inputVariablesNames,
const Description & formulas);
/** Indicator function constructor
* @deprecated */
Function(const Function & function,
const ComparisonOperator & comparisonOperator,
const Scalar threshold);
/** Aggregated function constructor: the output is the aggregation of the several functions */
Function(const FunctionCollection & functionCollection);
/** Linear combination function constructor
* @deprecated */
Function(const FunctionCollection & functionCollection,
const Point & coefficients);
/** Dual linear combination function constructor */
Function(const FunctionCollection & functionCollection,
const Sample & coefficients);
/** Simplified analytical formula constructor
* @deprecated */
Function(const String & inputVariableName,
const String & formula,
const String & outputVariableName = "outputVariable");
#ifndef SWIG
/** Constructor from evaluation */
explicit Function(const EvaluationPointer & evaluationImplementation);
/** Constructor from implementations */
Function(const EvaluationPointer & evaluationImplementation,
const GradientPointer & gradientImplenmentation,
const HessianPointer & hessianImplementation);
#endif
/** Constructor from samples
* @deprecated */
Function(const Sample & inputSample,
const Sample & outputSample);
/** Constructor from field using P1 Lagrange interpolation */
Function(const Field & field);
/** Constructor by splitting the input of a function between variables and parameters
* @deprecated */
Function(const Function & function,
const Indices & set,
const Point & referencePoint,
const Bool parametersSet = true);
/** Comparison operator */
Bool operator ==(const Function & other) const;
/** String converter */
virtual String __repr__() const;
/** String converter */
virtual String __str__(const String & offset = "") const;
/** @brief Enable the internal cache
*
* The cache stores previously computed output values, so calling the cache before processing the %Function
* can save much time and avoid useless computations. However, calling the cache can eat time if the computation is
* very short. So cache is disabled by default, except when the underlying implementation uses a wrapper.
*
* The reason is that building and linking to a wrapper is an extra burden that is valuable only if the computation
* code is long enough to justify it. Calling the cache in this case will save time for sure.
*/
void enableCache() const;
/** @brief Disable the internal cache
* @see enableCache()
*/
void disableCache() const;
/** @brief Test the internal cache activity
* @see enableCache()
*/
Bool isCacheEnabled() const;
/** @brief Returns the number of successful hits in the cache
*/
UnsignedInteger getCacheHits() const;
/** @brief Add some content to the cache
*/
void addCacheContent(const Sample & inSample, const Sample & outSample);
/** @brief Returns the cache input
*/
Sample getCacheInput() const;
/** @brief Returns the cache output
*/
Sample getCacheOutput() const;
/** @brief Empty the cache
*/
void clearCache() const;
/** Enable or disable the input/output history
* The input and output strategies store input and output values of the function,
* in order to allow to retrieve these values e.g. after the execution of an algorithm
* for which the user has no access to the generated inputs and the corresponding output.
*/
void enableHistory() const;
/** @brief Disable the history mechanism
* @see enableHistory()
*/
void disableHistory() const;
/** @brief Test the history mechanism activity
* @see enableHistory()
*/
Bool isHistoryEnabled() const;
/** @brief Clear the history mechanism
* @see enableHistory()
*/
void clearHistory() const;
/** @brief Retrieve the history of the input values
* @see enableHistory()
*/
HistoryStrategy getHistoryInput() const;
/** @brief Retrieve the history of the output values
* @see enableHistory()
*/
HistoryStrategy getHistoryOutput() const;
/** Input point / parameter history accessor */
Sample getInputPointHistory() const;
Sample getInputParameterHistory() const;
/** Function implementation accessors */
void setEvaluation(const EvaluationPointer & evaluation);
const EvaluationPointer & getEvaluation() const;
/** Gradient implementation accessors */
void setGradient(const GradientImplementation & gradient);
#ifndef SWIG
void setGradient(const GradientPointer & gradient);
#endif
const GradientPointer & getGradient() const;
/** Hessian implementation accessors */
void setHessian(const HessianImplementation & hessian);
#ifndef SWIG
void setHessian(const HessianPointer & hessian);
#endif
const HessianPointer & getHessian() const;
/** Flag for default gradient accessors */
Bool getUseDefaultGradientImplementation() const;
void setUseDefaultGradientImplementation(const Bool gradientFlag);
/** Flag for default hessian accessors */
Bool getUseDefaultHessianImplementation() const;
void setUseDefaultHessianImplementation(const Bool hessianFlag);
/** Multiplication of two 1D output functions with the same input dimension */
virtual ProductFunction operator * (const Function & right) const;
/** Addition of two functions with the same input and output dimensions */
virtual Function operator + (const Function & right) const;
/** Soustraction of two functions with the same input and output dimensions */
virtual Function operator - (const Function & right) const;
/** Operator () */
Point operator() (const Point & inP) const;
Point operator() (const Point & inP,
const Point & parameter);
Sample operator() (const Point & point,
const Sample & parameters);
Sample operator() (const Sample & inS) const;
Field operator() (const Field & inTS) const;
/** Method gradient() returns the Jacobian transposed matrix of the function at point */
Matrix gradient(const Point & inP) const;
Matrix gradient(const Point & inP,
const Point & parameters);
/** Method hessian() returns the symmetric tensor of the function at point */
SymmetricTensor hessian(const Point & inP) const;
SymmetricTensor hessian(const Point & inP,
const Point & parameters);
/** Gradient according to the marginal parameters */
virtual Matrix parameterGradient(const Point & inP) const;
virtual Matrix parameterGradient(const Point & inP,
const Point & parameters);
/** Parameters value accessor */
virtual Point getParameter() const;
virtual void setParameter(const Point & parameter);
/** Parameters description accessor */
virtual Description getParameterDescription() const;
virtual void setParameterDescription(const Description & description);
/** Accessor for parameter dimension */
UnsignedInteger getParameterDimension() const;
/** Accessor for input point dimension */
UnsignedInteger getInputDimension() const;
/** Accessor for output point dimension */
UnsignedInteger getOutputDimension() const;
/** Description Accessor, i.e. the names of the input and output parameters */
void setDescription(const Description & description);
Description getDescription() const;
/** Input description Accessor, i.e. the names of the input parameters */
Description getInputDescription() const;
/** Output description Accessor, i.e. the names of the Output parameters */
Description getOutputDescription() const;
/** Get the i-th marginal function */
Function getMarginal(const UnsignedInteger i) const;
/** Get the function corresponding to indices components */
Function getMarginal(const Indices & indices) const;
/** Number of calls to the evaluation */
UnsignedInteger getCallsNumber() const;
UnsignedInteger getEvaluationCallsNumber() const;
/** Number of calls to the gradient */
UnsignedInteger getGradientCallsNumber() const;
/** Number of calls to the hessian */
UnsignedInteger getHessianCallsNumber() const;
/** Draw the given 1D marginal output as a function of the given 1D marginal input around the given central point */
virtual Graph draw(const UnsignedInteger inputMarginal,
const UnsignedInteger outputMarginal,
const Point & centralPoint,
const Scalar xMin,
const Scalar xMax,
const UnsignedInteger pointNumber = ResourceMap::GetAsUnsignedInteger("NumericalMathEvaluation-DefaultPointNumber"),
const GraphImplementation::LogScale scale = GraphImplementation::NONE) const;
/** Draw the given 1D marginal output as a function of the given 2D marginal input around the given central point */
virtual Graph draw(const UnsignedInteger firstInputMarginal,
const UnsignedInteger secondInputMarginal,
const UnsignedInteger outputMarginal,
const Point & centralPoint,
const Point & xMin,
const Point & xMax,
const Indices & pointNumber = Indices(2, ResourceMap::GetAsUnsignedInteger("NumericalMathEvaluation-DefaultPointNumber")),
const GraphImplementation::LogScale scale = GraphImplementation::NONE) const;
/** Draw the output of the function with respect to its input when the input and output dimensions are 1 */
virtual Graph draw(const Scalar xMin,
const Scalar xMax,
const UnsignedInteger pointNumber = ResourceMap::GetAsUnsignedInteger("NumericalMathEvaluation-DefaultPointNumber"),
const GraphImplementation::LogScale scale = GraphImplementation::NONE) const;
/** Draw the output of the function with respect to its input when the input dimension is 2 and the output dimension is 1 */
virtual Graph draw(const Point & xMin,
const Point & xMax,
const Indices & pointNumber = Indices(2, ResourceMap::GetAsUnsignedInteger("NumericalMathEvaluation-DefaultPointNumber")),
const GraphImplementation::LogScale scale = GraphImplementation::NONE) const;
/** Static methods for documentation of analytical functions
* @deprecated
*/
static Description GetValidConstants();
static Description GetValidFunctions();
static Description GetValidOperators();
}; /* class Function */
END_NAMESPACE_OPENTURNS
#endif /* OPENTURNS_FUNCTION_HXX */
|