/usr/include/SurgSim/Physics/MassSpringRepresentation.h is in libopensurgsim-dev 0.7.0-6ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 | // This file is a part of the OpenSurgSim project.
// Copyright 2013, SimQuest Solutions Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SURGSIM_PHYSICS_MASSSPRINGREPRESENTATION_H
#define SURGSIM_PHYSICS_MASSSPRINGREPRESENTATION_H
#include <memory>
#include "SurgSim/Physics/DeformableRepresentation.h"
#include "SurgSim/Physics/Mass.h"
#include "SurgSim/Physics/Spring.h"
#include "SurgSim/Math/Vector.h"
#include "SurgSim/Math/Matrix.h"
namespace SurgSim
{
namespace Physics
{
/// MassSpring model is a deformable model (a set of masses connected by springs).
/// \note A MassSpring is a DeformableRepresentation (Physics::Representation and Math::OdeEquation)
/// \note Therefore, it defines a dynamic system M.a=F(x,v) with the particularity that M is diagonal
/// \note The model handles damping through the Rayleigh damping (where damping is a combination of mass and stiffness)
class MassSpringRepresentation : public DeformableRepresentation
{
public:
/// Constructor
/// \param name The name of the MassSpringRepresentation
explicit MassSpringRepresentation(const std::string& name);
/// Destructor
virtual ~MassSpringRepresentation();
/// Adds a mass
/// \param mass The mass to add to the representation
/// \note Masses are kept in an ordered list, giving them an index
/// \note This mass will be associated with the node of same index in any associated OdeState
void addMass(const std::shared_ptr<Mass> mass);
/// Adds a spring
/// \param spring The spring to add to the representation
void addSpring(const std::shared_ptr<Spring> spring);
/// Gets the number of masses
/// \return the number of masses
size_t getNumMasses() const;
/// Gets the number of springs
/// \return the number of springs
size_t getNumSprings() const;
/// Retrieves the mass of a given node
/// \param nodeId The node id for which the mass is requested
/// \return the mass attribute of a node
/// \note The mass is returned with read/write access
/// \note Out of range nodeId will raise an exception
std::shared_ptr<Mass> getMass(size_t nodeId);
/// Retrieves a given spring from its id
/// \param springId The spring id for which the spring is requested
/// \return the spring for the given springId
/// \note The spring is returned with read/write access
/// \note Out of range springId will raise an exception
std::shared_ptr<Spring> getSpring(size_t springId);
/// Gets the total mass of the mass spring
/// \return The total mass of the mass spring (in Kg)
double getTotalMass() const;
/// Gets the Rayleigh stiffness parameter
/// \return The Rayleigh stiffness parameter
double getRayleighDampingStiffness() const;
/// Gets the Rayleigh mass parameter
/// \return The Rayleigh mass parameter
double getRayleighDampingMass() const;
/// Sets the Rayleigh stiffness parameter
/// \param stiffnessCoef The Rayleigh stiffness parameter
void setRayleighDampingStiffness(double stiffnessCoef);
/// Sets the Rayleigh mass parameter
/// \param massCoef The Rayleigh mass parameter
void setRayleighDampingMass(double massCoef);
void addExternalGeneralizedForce(std::shared_ptr<Localization> localization,
const SurgSim::Math::Vector& generalizedForce,
const SurgSim::Math::Matrix& K = SurgSim::Math::Matrix(),
const SurgSim::Math::Matrix& D = SurgSim::Math::Matrix()) override;
/// Preprocessing done before the update call
/// \param dt The time step (in seconds)
void beforeUpdate(double dt) override;
std::shared_ptr<Localization> createLocalization(const SurgSim::DataStructures::Location& location) override;
protected:
/// Add the Rayleigh damping forces
/// \param[in,out] f The force vector to cumulate the Rayleigh damping force into
/// \param state The state vector containing positions and velocities
/// \param useGlobalMassMatrix, useGlobalStiffnessMatrix True indicates that the global mass and stiffness matrices
/// should be used (F = -c.M.v - d.K.v)
/// \param scale A scaling factor to apply on the damping force
/// \note Damping matrix D = c.M + d.K (Rayleigh damping definition)
/// \note F = - D.v = -c.M.v - d.K.v
/// \note If {useGlobalMassMatrix | useGlobalStiffnessMatrix} is True, {M | K} will be used, otherwise
/// \note the {mass|stiffness} component will be computed FemElement by FemElement
void addRayleighDampingForce(SurgSim::Math::Vector* f, const SurgSim::Math::OdeState& state,
bool useGlobalStiffnessMatrix = false, bool useGlobalMassMatrix = false,
double scale = 1.0);
/// Add the springs force to f (given a state)
/// \param[in,out] f The force vector to cumulate the spring forces into
/// \param state The state vector containing positions and velocities
/// \param scale A scaling factor to scale the spring forces with
void addSpringsForce(SurgSim::Math::Vector* f, const SurgSim::Math::OdeState& state, double scale = 1.0);
/// Add the gravity force to f (given a state)
/// \param[in,out] f The force vector to cumulate the gravity force into
/// \param state The state vector containing positions and velocities
/// \param scale A scaling factor to scale the gravity force with
/// \note This method does not do anything if gravity is disabled
void addGravityForce(SurgSim::Math::Vector* f, const SurgSim::Math::OdeState& state, double scale = 1.0);
/// Transform a state using a given transformation
/// \param[in,out] state The state to be transformed
/// \param transform The transformation to apply
void transformState(std::shared_ptr<SurgSim::Math::OdeState> state,
const SurgSim::Math::RigidTransform3d& transform);
bool doInitialize() override;
void computeF(const SurgSim::Math::OdeState& state) override;
void computeM(const SurgSim::Math::OdeState& state) override;
void computeD(const SurgSim::Math::OdeState& state) override;
void computeK(const SurgSim::Math::OdeState& state) override;
void computeFMDK(const SurgSim::Math::OdeState& state) override;
private:
/// Masses
std::vector<std::shared_ptr<Mass>> m_masses;
/// Springs
std::vector<std::shared_ptr<Spring>> m_springs;
/// Rayleigh damping parameters (massCoefficient and stiffnessCoefficient)
/// D = massCoefficient.M + stiffnessCoefficient.K
/// Matrices: D = damping, M = mass, K = stiffness
struct
{
double massCoefficient;
double stiffnessCoefficient;
} m_rayleighDamping;
};
} // namespace Physics
} // namespace SurgSim
#endif // SURGSIM_PHYSICS_MASSSPRINGREPRESENTATION_H
|