/usr/include/SurgSim/Physics/FemElement.h is in libopensurgsim-dev 0.7.0-6ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 | // This file is a part of the OpenSurgSim project.
// Copyright 2013, SimQuest Solutions Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SURGSIM_PHYSICS_FEMELEMENT_H
#define SURGSIM_PHYSICS_FEMELEMENT_H
#include <vector>
#include "SurgSim/Framework/ObjectFactory.h"
#include "SurgSim/Math/Matrix.h"
#include "SurgSim/Math/SparseMatrix.h"
#include "SurgSim/Math/Vector.h"
#include "SurgSim/Physics/Fem.h"
namespace SurgSim
{
namespace Math
{
class OdeState;
};
namespace Physics
{
/// Base class for all Fem Element (1D, 2D, 3D)
/// It handles the node ids to which it is connected and requires all derived classes to compute the element
/// mass matrix and the force vector along with the derivatives (the stiffness and damping matrices).
/// A extra method also exist to compute all of them at once for performance purposes.
/// It holds on to the actual computed values (m_f, m_M, m_D, m_K) as its size is not predefined from outside
/// and would requires intensive (de)allocation or a temporary variable anyway.
/// It contains the linear elasticity parameter (Young modulus and Poisson ratio) as well as mass density
class FemElement
{
public:
/// Constructor
FemElement();
/// Virtual destructor
virtual ~FemElement();
/// Initialize the FemElement once everything has been set
/// \param state The state to initialize the FemElement with
virtual void initialize(const SurgSim::Math::OdeState& state);
typedef SurgSim::Framework::ObjectFactory1<FemElement, std::shared_ptr<FemElementStructs::FemElementParameter>>
FactoryType;
static FactoryType& getFactory();
/// Gets the number of degree of freedom per node
/// \return The number of dof per node
size_t getNumDofPerNode() const;
/// Gets the number of nodes connected by this element
/// \return The number of nodes
size_t getNumNodes() const;
/// Gets the elementNodeId-th node id
/// \return The requested node id
size_t getNodeId(size_t elementNodeId) const;
/// Gets the node ids for this element
/// \return A vector containing the node ids on which the element is defined
const std::vector<size_t>& getNodeIds() const;
/// Sets the Young modulus (in N.m-2)
/// \param E The Young modulus
void setYoungModulus(double E);
/// Gets the Young modulus (in N.m-2)
/// \return The Young modulus
double getYoungModulus() const;
/// Sets the Poisson ratio (unitless)
/// \param nu The Poisson ratio
void setPoissonRatio(double nu);
/// Gets the Poisson ratio (unitless)
/// \return The Poisson ratio
double getPoissonRatio() const;
/// Sets the mass density (in Kg.m-3)
/// \param rho The mass density
void setMassDensity(double rho);
/// Gets the mass density (in Kg.m-3)
/// \return The mass density
double getMassDensity() const;
/// Gets the element mass based on the input state (in Kg)
/// \param state The state to compute the mass with
/// \return The mass of this element (in Kg)
double getMass(const SurgSim::Math::OdeState& state) const;
/// Gets the element volume based on the input state (in m-3)
/// \param state The state to compute the volume with
/// \return The volume of this element (in m-3)
virtual double getVolume(const SurgSim::Math::OdeState& state) const = 0;
/// Adds the element force (computed for a given state) to a complete system force vector F (assembly)
/// \param[in,out] F The complete system force vector to add the element force into
/// \param scale A factor to scale the added force with
/// \note The element force is of size (getNumDofPerNode() x getNumNodes())
/// \note This method supposes that the incoming state contains information with the same number of dof
/// \note per node as getNumDofPerNode()
virtual void addForce(SurgSim::Math::Vector* F, double scale = 1.0) const;
/// Adds the element mass matrix M (computed for a given state) to a complete system mass matrix M (assembly)
/// \param[in,out] M The complete system mass matrix to add the element mass-matrix into
/// \param scale A factor to scale the added mass matrix with
/// \note The element mass matrix is square of size getNumDofPerNode() x getNumNodes()
/// \note This method supposes that the incoming state contains information with the same number of
/// \note dof per node as getNumDofPerNode()
virtual void addMass(SurgSim::Math::SparseMatrix* M, double scale = 1.0) const;
/// Adds the element damping matrix D (= -df/dv) (comuted for a given state)
/// to a complete system damping matrix D (assembly)
/// \param[in,out] D The complete system damping matrix to add the element damping matrix into
/// \param scale A factor to scale the added damping matrix with
/// \note The element damping matrix is square of size getNumDofPerNode() x getNumNodes()
/// \note This method supposes that the incoming state contains information with the same number of
/// \note dof per node as getNumDofPerNode()
virtual void addDamping(SurgSim::Math::SparseMatrix* D, double scale = 1.0) const;
/// Adds the element stiffness matrix K (= -df/dx) (computed for a given state)
/// to a complete system stiffness matrix K (assembly)
/// \param[in,out] K The complete system stiffness matrix to add the element stiffness matrix into
/// \param scale A factor to scale the added stiffness matrix with
/// \note The element stiffness matrix is square of size getNumDofPerNode() x getNumNodes()
/// \note This method supposes that the incoming state contains information with the same number of
/// \note dof per node as getNumDofPerNode()
virtual void addStiffness(SurgSim::Math::SparseMatrix* K, double scale = 1.0) const;
/// Adds the element force vector, mass, stiffness and damping matrices (computed for a given state)
/// into a complete system data structure F, M, D, K (assembly)
/// \param[in,out] F The complete system force vector to add the element force into
/// \param[in,out] M The complete system mass matrix to add the element mass matrix into
/// \param[in,out] D The complete system damping matrix to add the element damping matrix into
/// \param[in,out] K The complete system stiffness matrix to add the element stiffness matrix into
/// \note This method supposes that the incoming state contains information with the same number of dof
/// \note per node as getNumDofPerNode()
virtual void addFMDK(SurgSim::Math::Vector* F,
SurgSim::Math::SparseMatrix* M,
SurgSim::Math::SparseMatrix* D,
SurgSim::Math::SparseMatrix* K) const;
/// Adds the element matrix-vector contribution F += (alphaM.M + alphaD.D + alphaK.K).x (computed for a given state)
/// into a complete system data structure F (assembly)
/// \param alphaM The scaling factor for the mass contribution
/// \param alphaD The scaling factor for the damping contribution
/// \param alphaK The scaling factor for the stiffness contribution
/// \param x A complete system vector to be used as the vector in the matrix-vector multiplication
/// \param[in,out] F The complete system force vector to add the element matrix-vector contribution into
/// \note This method supposes that the incoming state contains information with the same number of dof
/// \note per node as getNumDofPerNode()
virtual void addMatVec(double alphaM, double alphaD, double alphaK,
const SurgSim::Math::Vector& x, SurgSim::Math::Vector* F) const;
/// Determines whether a given natural coordinate is valid
/// \param naturalCoordinate Coordinate to check
/// \return True if valid
bool isValidCoordinate(const SurgSim::Math::Vector& naturalCoordinate) const;
/// Computes a given natural coordinate in cartesian coordinates
/// \param state The state at which to transform coordinates
/// \param naturalCoordinate The coordinates to transform
/// \return The resultant cartesian coordinates
virtual SurgSim::Math::Vector computeCartesianCoordinate(
const SurgSim::Math::OdeState& state,
const SurgSim::Math::Vector& naturalCoordinate) const = 0;
/// Computes a natural coordinate given a global coordinate
/// \param state The state at which to transform coordinates
/// \param cartesianCoordinate The coordinates to transform
/// \return The resultant natural coordinates
virtual SurgSim::Math::Vector computeNaturalCoordinate(
const SurgSim::Math::OdeState& state,
const SurgSim::Math::Vector& cartesianCoordinate) const = 0;
/// Helper method to add a sub-matrix made of squared-blocks into a matrix, for the sake of clarity
/// \tparam DerivedSub The type of the 'subMatrix' (can usually be inferred). Can be any type, but does not
/// support Eigen expression. If it is a Sparse storage type the alignment must be the same
/// as the SparseMatrix: Opt.
/// Note that no assertion or verification is done on this type.
/// \tparam T, Opt, Index Types and option defining the output matrix type SparseMatrix<T, Opt, Index>
/// \param subMatrix The sub-matrix (containing all the squared-blocks)
/// \param blockIds Vector of block indices (for accessing matrix) corresponding to the blocks in sub-matrix
/// \param blockSize The blocks size
/// \param[out] matrix The matrix to add the sub-matrix blocks into
/// \param initialize Optional parameter, default true. If true, the matrix form is assumed to be undefined and is
/// initialized when necessary. If false, the matrix form is assumed to be previously defined.
template <typename DerivedSub, typename T, int Opt, typename Index>
void assembleMatrixBlocks(const DerivedSub& subMatrix, const std::vector<size_t> blockIds,
size_t blockSize, Eigen::SparseMatrix<T, Opt, Index>* matrix,
bool initialize = true) const;
/// Update the FemElement based on the given state.
/// \param state \f$(x, v)\f$ the current position and velocity to evaluate the various terms with
/// \param options Flag to specify which of the F, M, D, K needs to be updated
void updateFMDK(const Math::OdeState& state, int options);
protected:
/// Sets the number of degrees of freedom per node
/// \param numDofPerNode The number of dof per node
/// \note Protected to be accessible only to derived classes which should be the only
/// \note ones able to set this parameter
void setNumDofPerNode(size_t numDofPerNode);
/// Update the FemElement based on the given state.
/// \param state \f$(x, v)\f$ the current position and velocity to evaluate the various terms with
/// \param options Flag to specify which of the F, M, D, K needs to be updated
virtual void doUpdateFMDK(const Math::OdeState& state, int options) = 0;
/// Initialize f, M, D, K variables.
void initializeFMDK();
/// Function to be overridden by the derived classes to initialize the f, M, D, K variables.
virtual void doInitializeFMDK();
/// Number of degree of freedom per node for this element
size_t m_numDofPerNode;
/// Node ids connected by this element
std::vector<size_t> m_nodeIds;
/// Mass density (in Kg.m-3)
double m_rho;
/// Young modulus (in N.m-2)
double m_E;
/// Poisson ratio (unitless)
double m_nu;
/// The force vector.
SurgSim::Math::Vector m_f;
/// The mass matrix.
SurgSim::Math::Matrix m_M;
/// The damping matrix.
SurgSim::Math::Matrix m_D;
/// Flag to specify of the damping is used.
bool m_useDamping;
/// The stiffness matrix.
SurgSim::Math::Matrix m_K;
private:
/// Flag to check in the f, M, D, K variables have been initialized.
bool m_initializedFMDK;
};
} // namespace Physics
} // namespace SurgSim
#include "SurgSim/Physics/FemElement-inl.h"
#endif // SURGSIM_PHYSICS_FEMELEMENT_H
|