This file is indexed.

/usr/include/SurgSim/Physics/Fem2DElementTriangle.h is in libopensurgsim-dev 0.7.0-6ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
// This file is a part of the OpenSurgSim project.
// Copyright 2013, SimQuest Solutions Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef SURGSIM_PHYSICS_FEM2DELEMENTTRIANGLE_H
#define SURGSIM_PHYSICS_FEM2DELEMENTTRIANGLE_H

#include <array>

#include "SurgSim/Physics/Fem.h"
#include "SurgSim/Physics/FemElement.h"

namespace SurgSim
{

namespace Physics
{
SURGSIM_STATIC_REGISTRATION(Fem2DElementTriangle);

/// 2D FemElement based on a triangle with a constant thickness
///
/// The triangle is modeled as a shell (6DOF) which is decomposed into a membrane (in-plane 2DOF \f$(x, y)\f$) and a
/// plate (bending/twisting 3DOF \f$(z, \theta_x, \theta_y)\f$). The thin-plate assumption does not consider the
/// drilling dof \f$\theta_z\f$.
/// The system includes the drilling DOF for completeness but does not assign any mass or stiffness to it.
///
/// The membrane (in-plane) equations (mass and stiffness) are following
/// "Theory of Matrix Structural Analysis" from J.S. Przemieniecki.
///
/// The thin-plate (bending) equations (mass and stiffness) are following
/// "A Study Of Three-Node Triangular Plate Bending Elements", Jean-Louis Batoz
/// Numerical Methods in Engineering, vol 15, 1771-1812 (1980). <br>
/// The plate mass matrix is not detailed in the above paper, but the analytical equations
/// have been derived from it. Moreover, to account for contribution of the displacement
/// along z to the plate mass matrix, we used a cubic expression of this displacement given in:
/// "Shell elements: modelizations DKT, DST, DKTG and Q4g", Code_Aster, 2013, Thomas De Soza.
///
/// \note The element is considered to have a constant thickness.
/// \note The element uses linear elasticity (not visco-elasticity), so it does not have any damping.
class Fem2DElementTriangle : public FemElement
{
	typedef Eigen::Matrix<double, 3, 3> Matrix33Type;

	typedef Eigen::Matrix<double, 3, 6> Matrix36Type;
	typedef Eigen::Matrix<double, 6, 6> Matrix66Type;

	typedef Eigen::Matrix<double, 3, 9> Matrix39Type;
	typedef Eigen::Matrix<double, 9, 9> Matrix99Type;

public:
	/// Constructor
	Fem2DElementTriangle();

	/// Constructor
	/// \param nodeIds An array of 3 node ids defining this triangle element with respect to a
	/// DeformableRepresentationState which is passed to the initialize method.
	explicit Fem2DElementTriangle(std::array<size_t, 3> nodeIds);

	/// Constructor for FemElement object factory
	/// \param elementData A FemElement struct defining this triangle element with respect to a
	/// DeformableRepresentationState which is passed to the initialize method.
	/// \exception SurgSim::Framework::AssertionFailure if nodeIds has a size different than 3
	explicit Fem2DElementTriangle(std::shared_ptr<FemElementStructs::FemElementParameter> elementData);

	SURGSIM_CLASSNAME(SurgSim::Physics::Fem2DElementTriangle)

	/// Sets the triangle's thickness
	/// \param thickness The thickness of the triangle
	void setThickness(double thickness);

	/// Gets the triangle's thickness
	/// \return The thickness of the triangle
	double getThickness() const;

	void initialize(const SurgSim::Math::OdeState& state) override;

	double getVolume(const SurgSim::Math::OdeState& state) const override;

	SurgSim::Math::Vector computeCartesianCoordinate(const SurgSim::Math::OdeState& state,
			const SurgSim::Math::Vector& naturalCoordinate) const override;

	SurgSim::Math::Vector computeNaturalCoordinate(const SurgSim::Math::OdeState& state,
			const SurgSim::Math::Vector& cartesianCoordinate) const override;

protected:
	/// Initializes variables needed before Initialize() is called
	void initializeMembers();

	/// Computes the triangle element's rotation given a state
	/// \param state The state to compute the rotation from
	/// \return The rotation matrix of the element in the given state
	SurgSim::Math::Matrix33d computeRotation(const SurgSim::Math::OdeState& state);

	/// Computes the triangle's local stiffness matrix
	/// \param state The state to compute the local stiffness matrix from
	/// \param[out] localStiffnessMatrix The local stiffness matrix to store the result into
	virtual void computeLocalStiffness(const SurgSim::Math::OdeState& state,
									   Eigen::Matrix<double, 18, 18>* localStiffnessMatrix);

	/// Computes the triangle's stiffness matrix
	/// \param state The state to compute the stiffness matrix from
	/// \param[out] stiffnessMatrix The stiffness matrix to store the result into
	void computeStiffness(const SurgSim::Math::OdeState& state, SurgSim::Math::Matrix* stiffnessMatrix);

	/// Computes the triangle's local mass matrix
	/// \param state The state to compute the local mass matrix from
	/// \param[out] localMassMatrix The local mass matrix to store the result into
	virtual void computeLocalMass(const SurgSim::Math::OdeState& state,
								  Eigen::Matrix<double, 18, 18>* localMassMatrix);

	/// Computes the triangle's mass matrix
	/// \param state The state to compute the mass matrix from
	/// \param[out] massMatrix The mass matrix to store the result into
	void computeMass(const SurgSim::Math::OdeState& state, SurgSim::Math::Matrix* massMatrix);

	void doUpdateFMDK(const Math::OdeState& state, int options) override;

	/// The element's rest state
	Eigen::Matrix<double, 18, 1> m_x0;

	/// Initial rotation matrix for the element
	SurgSim::Math::Matrix33d m_initialRotation;

	/// Stiffness matrix (in local coordinate frame)
	Eigen::Matrix<double, 18, 18> m_MLocal;
	/// Stiffness matrix (in local coordinate frame)
	Eigen::Matrix<double, 18, 18> m_KLocal;

	/// The triangle rest area
	double m_restArea;

	/// Thickness of the element
	double m_thickness;

	/// Compute the various shape functions (membrane and plate deformations) parameters
	/// \param restState the rest state to compute the shape functions parameters from
	void computeShapeFunctionsParameters(const SurgSim::Math::OdeState& restState);

	/// Membrane (in-plane) deformation. DOF simulated: (x, y).
	/// "Theory of Matrix Structural Analysis" from J.S. Przemieniecki.
	/// Shape functions are \f$f_i(x, y) = a_i + b_i.x + c_i.y\f$, here we store \f$(a_i, b_i, c_i)\f$ on each row.
	SurgSim::Math::Matrix33d m_membraneShapeFunctionsParameters;

	// Thin-plate (bending/twisting) specific data structure
	// DOF simulated: (z, thetaX, thetaY)
	// "A Study Of Three-Node Triangular Plate Bending Elements", Jean-Louis Batoz
	// Numerical Methods in Engineering, vol 15, 1771-1812 (1980)
	// Indices are as follow:
	// 0 1 2 denotes triangle's points ABC:
	// 4 (mid-edge 12) 5 (mid-edge 20) 6 (mid-edge 01) denotes mid-edge points
	// Data structures having only mid-edge information are 0 based (0->4 (mid-egde 12) ; 1->5 ; 2->6)

	//@{
	SurgSim::Math::Vector3d m_xij;     ///< Batoz variable \f$x_{ij} = x_i - x_j\f$
	SurgSim::Math::Vector3d m_yij;     ///< Batoz variable \f$y_{ij} = y_i - y_j\f$
	SurgSim::Math::Vector3d m_lij_sqr; ///< Batoz variable \f$l_{ij}^2 = x_{ij}^2 + y_{ij}^2\f$
	SurgSim::Math::Vector3d m_ak;      ///< Batoz variable \f$a_{k} = -x_{ij}/l_i^2\f$
	SurgSim::Math::Vector3d m_bk;      ///< Batoz variable \f$b_{k} = 3/4 x_{ij} y_{ij}/l_{ij}2\f$
	SurgSim::Math::Vector3d m_ck;      ///< Batoz variable \f$c_{k} = (1/4 x_{ij}^2 - 1/2 y_{ij}^2)/l_{ij}^2\f$
	SurgSim::Math::Vector3d m_dk;      ///< Batoz variable \f$d_{k} = -y_{ij}/l_{ij}^2\f$
	SurgSim::Math::Vector3d m_ek;      ///< Batoz variable \f$e_{k} = (1/4 y_{ij}^2 - 1/2 x_{ij}^2)/l_{ij}^2\f$
	//@}

	//@{
	SurgSim::Math::Vector3d m_Pk;      ///< Batoz variable \f$P_{k} = -6x_{ij}/l_{ij}^2    = 6.\textrm{m_a}_k\f$
	SurgSim::Math::Vector3d m_qk;      ///< Batoz variable \f$q_{k} = 3x_{ij}y_{ij}/l_{ij}^2  = 4.\textrm{m_b}_k\f$
	SurgSim::Math::Vector3d m_tk;      ///< Batoz variable \f$t_{k} = -6y_{ij}/l_{ij}^2    = 6.\textrm{m_d}_k\f$
	SurgSim::Math::Vector3d m_rk;      ///< Batoz variable \f$r_{k} = 3y_{ij}^2/l_{ij}^2\f$
	//@}

	//@{
	SurgSim::Math::Matrix m_integral_dT_d;  ///< Plate mass matrix: integral terms related to the dof \f$(z)\f$
	SurgSim::Math::Matrix m_integralHyiHyj; ///< Plate mass matrix: integral terms related to the dof \f$(\theta_x)\f$
	SurgSim::Math::Matrix m_integralHxiHxj; ///< Plate mass matrix: integral terms related to the dof \f$(\theta_y)\f$
	//@}

	/// Batoz derivative dHx/dxi
	/// \param xi, eta The parametric coordinate (in [0 1] and xi+eta<1.0)
	/// \return The vector dHx/dxi evaluated at (xi, eta)
	std::array<double, 9> batozDhxDxi(double xi, double eta) const;
	/// Batoz derivative dHx/deta
	/// \param xi, eta The parametric coordinate (in [0 1] and xi+eta<1.0)
	/// \return The vector dHx/deta evaluated at (xi, eta)
	std::array<double, 9> batozDhxDeta(double xi, double eta) const;
	/// Batoz derivative dHy/dxi
	/// \param xi, eta The parametric coordinate (in [0 1] and xi+eta<1.0)
	/// \return The vector dHy/dxi evaluated at (xi, eta)
	std::array<double, 9> batozDhyDxi(double xi, double eta) const;
	/// Batoz derivative dHy/deta
	/// \param xi, eta The parametric coordinate (in [0 1] and xi+eta<1.0)
	/// \return The vector dHy/deta evaluated at (xi, eta)
	std::array<double, 9> batozDhyDeta(double xi, double eta) const;
	/// Batoz strain displacement matrix evaluated at a given point
	/// \param xi, eta The parametric coordinate (in [0 1] and xi+eta<1.0)
	/// \return The 3x9 strain displacement matrix evaluated at (xi, eta)
	Matrix39Type batozStrainDisplacement(double xi, double eta) const;

private:
	/// Computes the triangle's local membrane part mass matrix
	/// \param state The state to compute the local membrane part mass matrix from
	/// \param[out] localMassMatrix The local mass matrix to store the result into
	void computeLocalMembraneMass(const SurgSim::Math::OdeState& state,
								  Eigen::Matrix<double, 18, 18>* localMassMatrix);

	/// Computes the triangle's local plate part mass matrix
	/// \param state The state to compute the local plate part mass matrix from
	/// \param[out] localMassMatrix The local mass matrix to store the result into
	/// \note The plate mass matrix is composed of 3 matrices associated respectively to
	/// \note displacements in direction (z, thetax, thetay).
	void computeLocalPlateMass(const SurgSim::Math::OdeState& state,
							   Eigen::Matrix<double, 18, 18>* localMassMatrix);

	/// Computes the integral terms d^T.d over the parametrized triangle area.
	/// This integral is required in the plate mass matrix computation.
	/// The displacement along z is w(x, y) = [d1 d2 d3 d4 d5 d6 d7 d8 d9].U = d.U
	/// with di cubic shape functions and U nodal plate displacements.
	void computeIntegral_dTd();

	/// Computes the integral terms Hy.Hy^T over the parametrized triangle area.
	/// This integral is required in the plate mass matrix computation.
	/// The displacement along thetay is Thetay(x, y) = -dw/dx = betax = Hx^T.U
	/// with Hxi quadratic shape functions and U nodal plate displacements.
	void computeIntegral_HxHxT();

	/// Computes the integral terms Hx.Hx^T over the parametrized triangle area.
	/// This integral is required in the plate mass matrix computation.
	/// The displacement along thetax is Thetax(x, y) = dw/dy = -betay = -Hy^T.U
	/// with Hyi quadratic shape functions and U nodal plate displacements.
	void computeIntegral_HyHyT();
};

} // namespace Physics

} // namespace SurgSim

#endif // SURGSIM_PHYSICS_FEM2DELEMENTTRIANGLE_H