This file is indexed.

/usr/include/SurgSim/Math/TriangleTriangleContactCalculation-inl.h is in libopensurgsim-dev 0.7.0-6ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
// This file is a part of the OpenSurgSim project.
// Copyright 2013, SimQuest Solutions Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef SURGSIM_MATH_TRIANGLETRIANGLECONTACTCALCULATION_INL_H
#define SURGSIM_MATH_TRIANGLETRIANGLECONTACTCALCULATION_INL_H

namespace SurgSim
{

namespace Math
{

/// A helper class for a triangle, used for the following two purposes:
///		- Clip against a given plane.
///		- Find the deepest point given a plane.
/// Created as a triangle and can become 4 or more sided polygon when clipped.
/// \note The vertices are stored in order, so that the edges of the polygon run between adjacent vertices
///    (and from the last vertex to the first).
/// \tparam T Accuracy of the calculation.
/// \tparam MOpt Eigen Matrix options.
template <class T, int MOpt>
class TriangleHelper
{
	static const size_t CAPACITY = 10;
	typedef Eigen::Matrix<T, 3, 1, MOpt> Vector3;
	typedef boost::container::static_vector<Vector3, CAPACITY> Vertices;

public:
	/// Constructor using the triangle data to initialize.
	/// \param v0, v1, v2 The vertices of the triangle.
	/// \param n The normal of the triangle.
	TriangleHelper(const Vector3& v0, const Vector3& v1, const Vector3& v2, const Vector3& n)
		: m_normal(n), m_receiverBufferIndex(0)
	{
		m_vertices[0] = &v0;
		m_vertices[1] = &v1;
		m_vertices[2] = &v2;
		m_planeD = -m_vertices[0]->dot(m_normal);
	}

	/// Given a triangle, find the deepest vertex in the swept volume of that triangle.
	/// \param triangle The triangle against which the penetration is checked.
	/// \param [out] penetrationDepth The depth of the deepest point in this triangle to the triangle sent in.
	/// \param [out] penetrationPoint0 The penetration point on this triangle.
	/// \param [out] penetrationPoint1 The penetration point on the triangle sent in.
	void findDeepestPenetrationWithTriangle(const TriangleHelper& triangle, T* penetrationDepth,
											Vector3* penetrationPoint0, Vector3* penetrationPoint1)
	{
		m_clippedVerticesBuffer[0].push_back(*m_vertices[0]);
		m_clippedVerticesBuffer[0].push_back(*m_vertices[1]);
		m_clippedVerticesBuffer[0].push_back(*m_vertices[2]);
		m_receiverBufferIndex = 1;

		Vector3 clipPlaneNormal;
		T clipPlaneD;

		for (size_t i = 0; i < 3; ++i)
		{
			triangle.getPrismPlane(i, &clipPlaneNormal, &clipPlaneD);
			clipAgainstPlane(clipPlaneNormal, clipPlaneD);
		}

		findDeepestVertexUnderPlane(triangle.m_normal, triangle.m_planeD, penetrationDepth, penetrationPoint0);

		SURGSIM_ASSERT(*penetrationDepth <= T(0))
				<< "The distance from triangle is calculated as " << *penetrationDepth << ". At this point in the"
				<< " algorithm, the depth is expected to be negative.";

		*penetrationPoint1 = *penetrationPoint0 - (triangle.m_normal * (*penetrationDepth));
		*penetrationDepth = -(*penetrationDepth);
	}

private:
	/// Get the bounding plane of the swept volume of this triangle.
	/// The swept volume of a triangle is an infinitely long prism.
	/// \param index There are three prism sides, the index indicates which one is to be calculated.
	/// \param planeNormal The outward facing normal of the prism plane.
	/// \param planeD d from the plane equation (n.x + d = 0) of the prism plane.
	void getPrismPlane(size_t index, Vector3* planeNormal, T* planeD) const
	{
		*planeNormal = *m_vertices[(index + 1) % 3] - *m_vertices[index];
		*planeNormal = planeNormal->cross(m_normal);
		planeNormal->normalize();
		*planeD = -m_vertices[index]->dot(*planeNormal);
	}

	/// Clip the polygon given a plane. Any part of the polygon above this plane is clipped.
	/// \note This may alter the number of vertices in this polygon.
	/// \param planeN The normal of the clipping plane.
	/// \param planeD The d from plane eqn (nx + d) of the clipping plane.
	void clipAgainstPlane(const Vector3& planeN, T planeD)
	{
		// Loop through the edges starting from (m_vertices[0]->m_vertices[1]) to
		// (m_vertices[m_numVertices - 1]->m_vertices[0]).
		// The start vertex and end vertex can be either under/on/over the clipping plane.
		//		start	|	end		|	action
		// ----------------------------------------------
		//		under	|	under	|	add start to clipped vertices
		//		under	|	on		|	add start to clipped vertices
		//		under	|	over	|	add start to clipped vertices, clip the edge to the plane (creating a vertex)
		//		on		|	under	|	add start to clipped vertices
		//		on		|	on		|	add start to clipped vertices
		//		on		|	over	|	add start to clipped vertices
		//		over	|	under	|	clip the edge to the plane (creating a vertex)
		//		over	|	on		|	none
		//		over	|	over	|	none

		Vertices& clippedVertices = m_clippedVerticesBuffer[m_receiverBufferIndex];
		m_receiverBufferIndex = (m_receiverBufferIndex + 1) % 2;
		Vertices& originalVertices = m_clippedVerticesBuffer[m_receiverBufferIndex];
		clippedVertices.clear();

		static const T EPSILON = T(Geometry::DistanceEpsilon);

		// Calculate the signed distance of the vertices from the clipping plane.
		boost::container::static_vector<T, CAPACITY> signedDistanceFromPlane;
		for (auto it = originalVertices.cbegin(); it != originalVertices.cend(); ++it)
		{
			signedDistanceFromPlane.push_back((*it).dot(planeN) + planeD);
		}

		// Temp variable.
		T ratio;

		// Iterators for the end vertices of an edge.
		typename boost::container::static_vector<Vector3, CAPACITY>::iterator end;

		// Iterators for the signed distance from plane of the start and end vertices of an edge.
		auto startSignedDistance = signedDistanceFromPlane.begin();
		typename boost::container::static_vector<T, CAPACITY>::iterator endSignedDistance;

		// Iterate over the edges of the current polygon.
		for (auto start = originalVertices.begin(); start != originalVertices.end(); ++start, ++startSignedDistance)
		{
			// If the end has reached the end of list, point it back to the front of list.
			end = start + 1;
			endSignedDistance = startSignedDistance + 1;
			if (end == originalVertices.end())
			{
				end = originalVertices.begin();
				endSignedDistance = signedDistanceFromPlane.begin();
			}

			// If the vertex is under or on the plane, add to the clippedVertices.
			if (*startSignedDistance <= EPSILON)
			{
				clippedVertices.push_back(*start);
			}

			// If the edge runs from one side of the plane to another. Clip it.
			if ((*startSignedDistance < -EPSILON && *endSignedDistance > EPSILON) ||
				(*startSignedDistance > EPSILON && *endSignedDistance < -EPSILON))
			{
				ratio = *startSignedDistance / (*startSignedDistance - *endSignedDistance);
				clippedVertices.push_back(*start + (*end - *start) * ratio);
			}
		}
	}

	/// Find the deepest vertex of this polygon under the plane.
	/// \note Asserts if there are no vertices in the polygon.
	/// \param planeN The normal of the plane.
	/// \param planeD The distance from origin of the plane.
	/// \param [out] depth The depth of the deepest point in the polygon from the given plane.
	/// \param [out] point The deepest point in the polgon from the given plane.
	void findDeepestVertexUnderPlane(const Vector3& planeN, T planeD, T* depth, Vector3* point) const
	{
		const Vertices& originalVertices = m_clippedVerticesBuffer[(m_receiverBufferIndex + 1) % 2];

		SURGSIM_ASSERT(originalVertices.size() > 0)
				<< "There are no vertices under the plane. This scenario should not arise according to the"
				<< " Triangle-Triangle Contact Calculation algorithm, because of the circumstances under which"
				<< " this function is set to be called.";

		T signedDistanceFromPlane;
		*depth = T(0);
		for (auto it = originalVertices.cbegin(); it != originalVertices.cend(); ++it)
		{
			signedDistanceFromPlane = (*it).dot(planeN) + planeD;
			if (signedDistanceFromPlane < *depth)
			{
				*depth = signedDistanceFromPlane;
				*point = *it;
			}
		}
	}

	/// Original vertices of the triangle.
	const Vector3* m_vertices[3];

	/// Normal of the triangle.
	const Vector3& m_normal;

	/// d from the plane equation (n.x + d = 0) for the plane of this triangle.
	T m_planeD;

	/// The buffers for the clipped vertices of the triangle.
	Vertices m_clippedVerticesBuffer[2];
	size_t m_receiverBufferIndex;
};


template <class T, int MOpt> inline
bool calculateContactTriangleTriangle(
	const Eigen::Matrix<T, 3, 1, MOpt>& t0v0,
	const Eigen::Matrix<T, 3, 1, MOpt>& t0v1,
	const Eigen::Matrix<T, 3, 1, MOpt>& t0v2,
	const Eigen::Matrix<T, 3, 1, MOpt>& t1v0,
	const Eigen::Matrix<T, 3, 1, MOpt>& t1v1,
	const Eigen::Matrix<T, 3, 1, MOpt>& t1v2,
	const Eigen::Matrix<T, 3, 1, MOpt>& t0n,
	const Eigen::Matrix<T, 3, 1, MOpt>& t1n,
	T* penetrationDepth,
	Eigen::Matrix<T, 3, 1, MOpt>* penetrationPoint0,
	Eigen::Matrix<T, 3, 1, MOpt>* penetrationPoint1,
	Eigen::Matrix<T, 3, 1, MOpt>* contactNormal)
{
	typedef Eigen::Matrix<T, 3, 1, MOpt> Vector3;

	// Check if the triangles intersect.
	if (!doesIntersectTriangleTriangle(t0v0, t0v1, t0v2, t1v0, t1v1, t1v2, t0n, t1n))
	{
		return false;
	}

	// When control reaches here, the two triangles are definitely intersecting.
	// Calculate the deepest penetration along each of the triangle normals.

	TriangleHelper<T, MOpt> triangle1(t0v0, t0v1, t0v2, t0n);
	TriangleHelper<T, MOpt> triangle2(t1v0, t1v1, t1v2, t1n);

	// Penetration info to be calculated.
	T penetrationDepths[2] = {T(0), T(0)};
	Vector3 penetrationPoints[2][2];

	// Calculate deepest penetration for each of the triangle.
	triangle1.findDeepestPenetrationWithTriangle(
		triangle2, &penetrationDepths[0], &penetrationPoints[0][0], &penetrationPoints[0][1]);

	triangle2.findDeepestPenetrationWithTriangle(
		triangle1, &penetrationDepths[1], &penetrationPoints[1][1], &penetrationPoints[1][0]);

	// Choose the lower penetration of the two as the contact.
	if (penetrationDepths[0] < penetrationDepths[1])
	{
		*penetrationDepth = penetrationDepths[0];
		*contactNormal = t1n;
		*penetrationPoint0 = penetrationPoints[0][0];
		*penetrationPoint1 = penetrationPoints[0][1];
	}
	else
	{
		*penetrationDepth = penetrationDepths[1];
		*contactNormal = -t0n;
		*penetrationPoint0 = penetrationPoints[1][0];
		*penetrationPoint1 = penetrationPoints[1][1];
	}

	return true;
}


template <class T, int MOpt> inline
bool calculateContactTriangleTriangle(
	const Eigen::Matrix<T, 3, 1, MOpt>& t0v0,
	const Eigen::Matrix<T, 3, 1, MOpt>& t0v1,
	const Eigen::Matrix<T, 3, 1, MOpt>& t0v2,
	const Eigen::Matrix<T, 3, 1, MOpt>& t1v0,
	const Eigen::Matrix<T, 3, 1, MOpt>& t1v1,
	const Eigen::Matrix<T, 3, 1, MOpt>& t1v2,
	T* penetrationDepth,
	Eigen::Matrix<T, 3, 1, MOpt>* penetrationPoint0,
	Eigen::Matrix<T, 3, 1, MOpt>* penetrationPoint1,
	Eigen::Matrix<T, 3, 1, MOpt>* contactNormal)
{
	Eigen::Matrix<T, 3, 1, MOpt> t0n = (t0v1 - t0v0).cross(t0v2 - t0v0);
	Eigen::Matrix<T, 3, 1, MOpt> t1n = (t1v1 - t1v0).cross(t1v2 - t1v0);
	if (t0n.isZero() || t1n.isZero())
	{
		// Degenerate triangle(s) passed to calculateContactTriangleTriangle
		return false;
	}
	t0n.normalize();
	t1n.normalize();
	return calculateContactTriangleTriangle(t0v0, t0v1, t0v2, t1v0, t1v1, t1v2, t0n, t1n, penetrationDepth,
											penetrationPoint0, penetrationPoint1, contactNormal);
}

template <class T, int MOpt> inline
bool calculateContactTriangleTriangleSeparatingAxis(
	const Eigen::Matrix<T, 3, 1, MOpt>& t0v0,
	const Eigen::Matrix<T, 3, 1, MOpt>& t0v1,
	const Eigen::Matrix<T, 3, 1, MOpt>& t0v2,
	const Eigen::Matrix<T, 3, 1, MOpt>& t1v0,
	const Eigen::Matrix<T, 3, 1, MOpt>& t1v1,
	const Eigen::Matrix<T, 3, 1, MOpt>& t1v2,
	const Eigen::Matrix<T, 3, 1, MOpt>& t0n,
	const Eigen::Matrix<T, 3, 1, MOpt>& t1n,
	T* penetrationDepth,
	Eigen::Matrix<T, 3, 1, MOpt>* penetrationPoint0,
	Eigen::Matrix<T, 3, 1, MOpt>* penetrationPoint1,
	Eigen::Matrix<T, 3, 1, MOpt>* contactNormal)
{
	typedef Eigen::Matrix<T, 3, 1, MOpt> Vector3;
	using SurgSim::Math::Geometry::DistanceEpsilon;
	using SurgSim::Math::Geometry::ScalarEpsilon;

	SURGSIM_ASSERT(std::abs(t0n.norm() - 1.0) < ScalarEpsilon && std::abs(t1n.norm() - 1.0) < ScalarEpsilon)
		<< "The normals sent in are not normalized! t0n{" << t0n.transpose() << "}, t1n{" << t1n.transpose() << "}.";

	// Early Rejection test:
	// If all the vertices of one triangle are on one side of the plane of the other triangle,
	// there is no intersection.
	std::array<Vector3, 2> d = {Vector3(t1n.dot(t0v0 - t1v0), t1n.dot(t0v1 - t1v0), t1n.dot(t0v2 - t1v0)),
		Vector3(t0n.dot(t1v0 - t0v0), t0n.dot(t1v1 - t0v0), t0n.dot(t1v2 - t0v0))};

	if ((d[0].array() < DistanceEpsilon).all() || (d[0].array() > -DistanceEpsilon).all() ||
		(d[1].array() < DistanceEpsilon).all() || (d[1].array() > -DistanceEpsilon).all())
	{
		return false;
	}

	const std::array<std::array<Vector3, 3>, 2> tv = {{{t0v0, t0v1, t0v2}, {t1v0, t1v1, t1v2}}};

	// Find the intersection between a triangle and the plane of the other triangle. These intersections would
	// lie on the separating axis (which is the cross product of the triangle normals).
	// The name tsa is to indicate that this is storing the intersection of the Triangle with the Separating Axis.
	std::array<std::array<Vector3, 2>, 2> tsa;
	for (int i = 0; i < 2; ++i)
	{
		int index = 0;

		for (int j = 0; j < 3; ++j)
		{
			int k = (j + 1) % 3;

			// Intersect the edge tivj->tivk with the plane of t{(i+1)/2}
			if ((d[i][j] < 0.0 && d[i][k] >= 0.0) || (d[i][j] > 0.0 && d[i][k] <= 0.0))
			{
				// The edge intersects the plane of t{(i+1)/2}.
				auto ratio = std::abs(d[i][j]) / (std::abs(d[i][j]) + std::abs(d[i][k]));
				tsa[i][index++] = tv[i][j] + ratio * (tv[i][k] - tv[i][j]);
			}
		}

		SURGSIM_ASSERT(index == 2)
			<< "The intersection between the edges of triangle " << i << " and the plane of the other triangle"
			<< " must result in two points exactly.";
	}

	// The separating axis.
	const Vector3 D = t0n.cross(t1n).normalized();
	Vector3 result;

	SURGSIM_ASSERT(distancePointLine(tsa[0][1], tsa[0][0], (tsa[0][0] + D).eval(), &result) < DistanceEpsilon &&
		distancePointLine(tsa[1][0], tsa[0][0], (tsa[0][0] + D).eval(), &result) < DistanceEpsilon &&
		distancePointLine(tsa[1][1], tsa[0][0], (tsa[0][0] + D).eval(), &result) < DistanceEpsilon)
		<< "The intersection points on the triangles do not lie on the separating axis";

	static const int DISTANCE = 0;
	static const int TRIANGLE = 1;
	static const int VERTEX = 2;

	// Find the signed distance of the four points on D (from tsa[0][0])
	// Store it in a tuple containing this signed distance, the corresponding triangle ID and vertex ID.
	std::array<std::tuple<T, int, int>, 4> intervals =
	{std::tuple<T, int, int>(0.0, 0, 0),
	 std::tuple<T, int, int>((tsa[0][1] - tsa[0][0]).dot(D), 0, 1),
	 std::tuple<T, int, int>((tsa[1][0] - tsa[0][0]).dot(D), 1, 0),
	 std::tuple<T, int, int>((tsa[1][1] - tsa[0][0]).dot(D), 1, 1)};

	// Sort the signed distance
	std::sort(intervals.begin(), intervals.end(), [](const std::tuple<T, int, int>& i, std::tuple<T, int, int>& j)
	{
		return (std::get<DISTANCE>(i) < std::get<DISTANCE>(j));
	});

	// The intersections of the triangles on the separating axis (P, Q, R, S) are now sorted according to their distance
	// along the separating axis.
	//
	//   *--------*--------*--------*
	//   P        Q        R        S

	// If P and Q belong to the same triangle, there is no intersection between the triangles.
	enum {P = 0, Q, R, S};
	if (std::get<TRIANGLE>(intervals[P]) == std::get<TRIANGLE>(intervals[Q]))
	{
		return false;
	}

	// At this point, there is some overlap of the triangles along the separating axis.
	size_t indexLeft, indexRight;
	if (std::get<TRIANGLE>(intervals[Q]) == std::get<TRIANGLE>(intervals[R]))
	{
		// Q and R belong to the same triangle: Depending on whether PQ or RS is shorter, either PS is moved to the
		// right of QR or QR is moved to the right of PS.
		//
		//   *--------*--------*--------*
		//   P        Q        R        S
		//            *--------*
		//                t1
		//   *--------------------------*
		//                t2

		if ((std::get<DISTANCE>(intervals[Q]) - std::get<DISTANCE>(intervals[P])) <
			(std::get<DISTANCE>(intervals[S]) - std::get<DISTANCE>(intervals[R])))
		{
			indexLeft = P;
			indexRight = R;
		}
		else
		{
			indexLeft = Q;
			indexRight = S;
		}
	}
	else
	{
		// Q and R belong to different triangle: QS is moved to the right of PR.
		//
		//   *--------*--------*--------*
		//   P        Q        R        S
		//   *-----------------*
		//           t1
		//            *-----------------*
		//                     t2

		indexLeft = Q;
		indexRight = R;
	}

	*penetrationDepth = std::get<DISTANCE>(intervals[indexRight]) - std::get<DISTANCE>(intervals[indexLeft]);
	if (*penetrationDepth < DistanceEpsilon)
	{
		// Not enough overlap to be determined as an intersection.
		return false;
	}

	if (std::get<TRIANGLE>(intervals[indexLeft]) == 0)
	{
		*penetrationPoint0 = tsa[0][std::get<VERTEX>(intervals[indexLeft])];
		*penetrationPoint1 = tsa[1][std::get<VERTEX>(intervals[indexRight])];
	}
	else
	{
		*penetrationPoint0 = tsa[0][std::get<VERTEX>(intervals[indexRight])];
		*penetrationPoint1 = tsa[1][std::get<VERTEX>(intervals[indexLeft])];
	}

	if ((*penetrationPoint0 - *penetrationPoint1).dot(D) > 0.0)
	{
		*contactNormal = -D;
	}
	else
	{
		*contactNormal = D;
	}

	return true;
}


template <class T, int MOpt> inline
bool calculateContactTriangleTriangleSeparatingAxis(
	const Eigen::Matrix<T, 3, 1, MOpt>& t0v0,
	const Eigen::Matrix<T, 3, 1, MOpt>& t0v1,
	const Eigen::Matrix<T, 3, 1, MOpt>& t0v2,
	const Eigen::Matrix<T, 3, 1, MOpt>& t1v0,
	const Eigen::Matrix<T, 3, 1, MOpt>& t1v1,
	const Eigen::Matrix<T, 3, 1, MOpt>& t1v2,
	T* penetrationDepth,
	Eigen::Matrix<T, 3, 1, MOpt>* penetrationPoint0,
	Eigen::Matrix<T, 3, 1, MOpt>* penetrationPoint1,
	Eigen::Matrix<T, 3, 1, MOpt>* contactNormal)
{
	Eigen::Matrix<T, 3, 1, MOpt> t0n = (t0v1 - t0v0).cross(t0v2 - t0v0);
	Eigen::Matrix<T, 3, 1, MOpt> t1n = (t1v1 - t1v0).cross(t1v2 - t1v0);
	if (t0n.isZero() || t1n.isZero())
	{
		// Degenerate triangle(s) passed to calculateContactTriangleTriangle
		return false;
	}
	t0n.normalize();
	t1n.normalize();
	return calculateContactTriangleTriangleSeparatingAxis(t0v0, t0v1, t0v2, t1v0, t1v1, t1v2, t0n, t1n,
		penetrationDepth, penetrationPoint0, penetrationPoint1, contactNormal);
}


} // namespace Math

} // namespace SurgSim

#endif // SURGSIM_MATH_TRIANGLETRIANGLECONTACTCALCULATION_INL_H