/usr/include/SurgSim/Math/OdeSolver.h is in libopensurgsim-dev 0.7.0-6ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 | // This file is a part of the OpenSurgSim project.
// Copyright 2013, SimQuest Solutions Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SURGSIM_MATH_ODESOLVER_H
#define SURGSIM_MATH_ODESOLVER_H
#include <functional>
#include <unordered_map>
#include <boost/assign/list_of.hpp> // for 'map_list_of()'
#include "SurgSim/Math/LinearSparseSolveAndInverse.h"
#include "SurgSim/Math/Matrix.h"
#include "SurgSim/Math/OdeEquation.h"
namespace SurgSim
{
namespace Math
{
/// The diverse numerical integration scheme supported
/// Each Ode Solver should have its own entry in this enum
enum IntegrationScheme
{
INTEGRATIONSCHEME_STATIC = 0,
INTEGRATIONSCHEME_LINEAR_STATIC,
INTEGRATIONSCHEME_EULER_EXPLICIT,
INTEGRATIONSCHEME_LINEAR_EULER_EXPLICIT,
INTEGRATIONSCHEME_EULER_EXPLICIT_MODIFIED,
INTEGRATIONSCHEME_LINEAR_EULER_EXPLICIT_MODIFIED,
INTEGRATIONSCHEME_EULER_IMPLICIT,
INTEGRATIONSCHEME_LINEAR_EULER_IMPLICIT,
INTEGRATIONSCHEME_RUNGE_KUTTA_4,
INTEGRATIONSCHEME_LINEAR_RUNGE_KUTTA_4,
MAX_INTEGRATIONSCHEMES
};
const std::unordered_map<IntegrationScheme, std::string, std::hash<int>> IntegrationSchemeNames =
boost::assign::map_list_of
(INTEGRATIONSCHEME_STATIC, "INTEGRATIONSCHEME_STATIC")
(INTEGRATIONSCHEME_LINEAR_STATIC, "INTEGRATIONSCHEME_LINEAR_STATIC")
(INTEGRATIONSCHEME_EULER_EXPLICIT, "INTEGRATIONSCHEME_EULER_EXPLICIT")
(INTEGRATIONSCHEME_LINEAR_EULER_EXPLICIT, "INTEGRATIONSCHEME_LINEAR_EULER_EXPLICIT")
(INTEGRATIONSCHEME_EULER_EXPLICIT_MODIFIED, "INTEGRATIONSCHEME_EULER_EXPLICIT_MODIFIED")
(INTEGRATIONSCHEME_LINEAR_EULER_EXPLICIT_MODIFIED, "INTEGRATIONSCHEME_LINEAR_EULER_EXPLICIT_MODIFIED")
(INTEGRATIONSCHEME_EULER_IMPLICIT, "INTEGRATIONSCHEME_EULER_IMPLICIT")
(INTEGRATIONSCHEME_LINEAR_EULER_IMPLICIT, "INTEGRATIONSCHEME_LINEAR_EULER_IMPLICIT")
(INTEGRATIONSCHEME_RUNGE_KUTTA_4, "INTEGRATIONSCHEME_RUNGE_KUTTA_4")
(INTEGRATIONSCHEME_LINEAR_RUNGE_KUTTA_4, "INTEGRATIONSCHEME_LINEAR_RUNGE_KUTTA_4");
/// Base class for all solvers of ode equation of order 2 of the form \f$M(x(t), v(t)).a(t) = f(t, x(t), v(t))\f$. <br>
/// This ode equation is solved as an ode of order 1 by defining the state vector
/// \f$y = \left(\begin{array}{c}x\\v\end{array}\right)\f$:
/// \f[
/// y' = \left(\begin{array}{c} x' \\ v' \end{array}\right) =
/// \left(\begin{array}{c} v \\ M(x, v)^{-1}.f(t, x, v) \end{array}\right)
/// \f]
/// \note To allow the use of explicit and implicit solver, we need to be able to evaluate:
/// \note \f$M(x(t), v(t))\f$
/// \note \f$f(t, x(t), v(t))\f$ but also
/// \note \f$K = -\frac{\partial f}{\partial x}(x(t), v(t))\f$
/// \note \f$D = -\frac{\partial f}{\partial v}(x(t), v(t))\f$
/// \note Models wanting the use of implicit solvers will need to compute these Jacobian matrices.
/// \note Matrices all have dense storage, but a specialized linear solver can be set per solver.
class OdeSolver
{
public:
/// Constructor
/// \param equation The ode equation to be solved
explicit OdeSolver(OdeEquation* equation);
/// Virtual destructor
virtual ~OdeSolver()
{}
/// Gets the solver's name
/// \return The solver name
const std::string getName() const;
/// Sets the specialized linear solver to use with this Ode solver
/// \param linearSolver the linear solver to use when solving the ode equation
void setLinearSolver(std::shared_ptr<LinearSparseSolveAndInverse> linearSolver);
/// Gets the specialized linear solver used with this Ode solver
/// \return The linear solver used when solving the ode equation
std::shared_ptr<LinearSparseSolveAndInverse> getLinearSolver() const;
/// Solves the equation
/// \param dt The time step
/// \param currentState State at time t
/// \param[out] newState State at time t+dt
/// \param computeCompliance True to explicitly compute the compliance matrix, False otherwise
virtual void solve(double dt, const OdeState& currentState, OdeState* newState, bool computeCompliance = true) = 0;
/// Computes the system and compliance matrices for a given state
/// \param dt The time step
/// \param state The state to compute the system and compliance matrices for
/// \param computeCompliance True to explicitly compute the compliance matrix, False otherwise
void computeMatrices(double dt, const OdeState& state, bool computeCompliance = true);
/// Queries the current system matrix
/// \return The latest system matrix calculated
const SparseMatrix& getSystemMatrix() const;
/// \return The latest compliance matrix computed (either by calling solve or computeMatrices)
const Matrix& getComplianceMatrix() const;
protected:
/// Assemble the linear system (A.x=b) to be solved for the state and new states (useful for certain ode solver).
/// \param dt The time step used in the system
/// \param state, newState The state and newState to be used to evaluate the system
/// \param computeRHS True to compute the RHS vector, False otherwise
/// \note The method should fill up the LHS matrix in m_systemMatrix and the RHS vector in m_b (if requested)
/// \note The method should take care of the boundary conditions properly on both the matrix and the vector.
/// \note The method should prepare the linear solver m_linearSolver to be used with the m_systemMatrix
virtual void assembleLinearSystem(double dt, const OdeState& state, const OdeState& newState,
bool computeRHS = true) = 0;
/// Helper method computing the compliance matrix from the system matrix and setting the boundary conditions
/// \param state The state describing the boundary conditions
/// \note The full system is not re-evaluated from the state, the current m_systemMatrix is directly used.
/// \note This method supposes that the linear solver has been updated with the current m_systemMatrix.
void computeComplianceMatrixFromSystemMatrix(const OdeState& state);
/// Name for this solver
/// \note MUST be set by the derived classes
std::string m_name;
/// The ode equation (API providing the necessary evaluation methods and the initial state)
OdeEquation& m_equation;
/// The specialized linear solver to use when solving the ode equation
std::shared_ptr<LinearSparseSolveAndInverse> m_linearSolver;
/// Linear system matrix (can be M, K, combination of MDK depending on the solver), including boundary conditions
/// \note A static solver will have K for system matrix
/// \note A dynamic explicit solver will have M for system matrix
/// \note A dynamic implicit solver will have a combination of M, D and K for system matrix
SparseMatrix m_systemMatrix;
/// Linear system solution and rhs vectors (including boundary conditions)
Vector m_solution, m_rhs;
/// Compliance matrix which is the inverse of the system matrix, including boundary conditions
Matrix m_complianceMatrix;
};
}; // namespace Math
}; // namespace SurgSim
#endif // SURGSIM_MATH_ODESOLVER_H
|