This file is indexed.

/usr/include/SurgSim/Math/LinearMotionArithmetic.h is in libopensurgsim-dev 0.7.0-6ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
// This file is a part of the OpenSurgSim project.
// Copyright 2013, SimQuest Solutions Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//    http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef SURGSIM_MATH_LINEARMOTIONARITHMETIC_H
#define SURGSIM_MATH_LINEARMOTIONARITHMETIC_H

#include <array>
#include <iostream>

#include <Eigen/Core>

#include "SurgSim/Math/IntervalArithmetic.h"
#include "SurgSim/Math/PolynomialValues.h"
#include "SurgSim/Math/Vector.h"

namespace SurgSim
{
namespace Math
{

/// LinearMotion is (intentionally) a lot like Interval, but it deals with linear motion where
/// all operands start and end their motion simultaneously.
///
/// LinearMotion results in much tighter bounds compared to Interval, since Interval must consider
/// *any* value of each operand, and LinearMotion only considers values that are synchronous with
/// one another.
///
/// The bounds of a LinearMotion are a start value and an end value; there's no requirement that
/// start <= end (or vice versa).
///
/// Many operations on LinearMotion arguments (*, /) return results that are not linear in time,
/// so those operations will return Interval instead.
///
/// \tparam T underlying data type over which the linear motion is defined.
///
/// \sa Interval<T>, and IntervalND<T, N>
template <typename T>
class LinearMotion
{
public:
	/// Constructor
	LinearMotion();

	/// Constructor
	/// \param start initial value of the constructed linear motion
	/// \param end final value of the constructed linear motion
	/// \exception if max is less than min
	LinearMotion(const T& start, const T& end);

	/// Copy constructor
	/// \param m Interval to be copied
	LinearMotion(const LinearMotion<T>& m);

	/// Move constructor
	/// \param m LinearMotion to be copied
	LinearMotion(LinearMotion<T>&& m);

	/// Assignment operator
	/// \param m Interval to be copied
	LinearMotion<T>& operator=(const LinearMotion<T>& m);

	/// Move assignment operator
	/// \param m Interval to be moved
	LinearMotion<T>& operator=(LinearMotion<T>&& m);

	/// Convert from LinearMotion to an Interval
	/// \return the conversion of the LinearMotion to an Interval
	Interval<T> toInterval() const;

	/// Returns a linear expression (degree-1 polynomial) whose value for t=0..1
	/// progresses from `start' to `end'.
	/// \return the conversion of the LinearMotion to a polynomial
	Polynomial<T, 1> toPolynomial() const;

	/// \return true if the linear motion crosses through 0.
	bool containsZero() const;

	/// \param i the linear motion to be tested
	/// \param epsilon the nearness parameter
	/// \return true if the current linear motion is within epsilon of the input linear motion
	bool isApprox(const LinearMotion<T>& i, const T& epsilon) const;

	/// \param m the linear motion to be tested
	/// \return true if the current linear motion is identical to the input linear motion
	bool operator==(const LinearMotion<T>& m) const;

	/// \param m the linear motion to be tested
	/// \return true if the current linear motion is not identical to the input linear motion
	bool operator!=(const LinearMotion<T>& m) const;

	/// @{
	/// Standard arithmetic operators extended to linear motions
	LinearMotion<T> operator+(const LinearMotion<T>& m) const;
	LinearMotion<T>& operator+=(const LinearMotion<T>& m);
	LinearMotion<T> operator-(const LinearMotion<T>& m) const;
	LinearMotion<T>& operator-=(const LinearMotion<T>& m);
	/// @}

	/// Standard arithmetic operators extended to interval groups
	/// \note Multiplication and division operators by their nature do not
	/// preserve time ordering and so the return value is an IntervalND instead
	/// of a LinearMotionND
	Interval<T> operator*(const LinearMotion<T>& m) const;

	/// Standard arithmetic operators extended to interval groups
	/// \note Multiplication and division operators by their nature do not
	/// preserve time ordering and so the return value is an IntervalND instead
	/// of a LinearMotionND
	/// \exception if any component of interval includes 0
	Interval<T> operator/(const LinearMotion<T>& m) const;

	/// \return the initial value of the linear motion
	T getStart() const;

	/// \return the end point of the linear motion
	T getEnd() const;

	/// \param t the parametric time at which to evaluate the linear motion
	/// \return the value of the linear motion at parametric time t
	T atTime(const T& t) const;

	/// \return the linear motion from the initial time to the midpoint
	LinearMotion<T> firstHalf() const;

	/// \return the linear motion from the midpoint to the endpoint
	LinearMotion<T> secondHalf() const;

private:
	/// The start point of the linear motion
	T m_start;

	/// The end point of the linear motion
	T m_end;
};

/// LinearMotionND<T, N> defines the concept of a group of linear motions and provides
/// operations on them including arithmetic operations, construction, and I/O.
///
/// \tparam T underlying data type over which the linear motion is defined.
/// \tparam N Dimensionality of the interval
///
/// \sa LinearMotionND<T> and IntervalArthmetic<T, N>
template <class T, int N>
class LinearMotionND
{
	static_assert(N > 0, "LinearMotion must have dimensionality > 0.");

public:
	/// Constructor
	LinearMotionND();

	/// Constructor
	/// \param x array of N motions to be copied into the group
	explicit LinearMotionND(const std::array<LinearMotion<T>, N>& x);

	/// Copy constructor
	/// \param motion motion group to copied
	LinearMotionND(const LinearMotionND<T, N>& motion);

	/// Move constructor
	/// \param motion motion to be copied
	LinearMotionND(LinearMotionND<T, N>&& motion);

	/// Constructor
	/// \param a array of N values to be used as the respective starts for the linear motion entries.
	/// \param b array of N values to be used as the respective ends for the linear motion entries.
	LinearMotionND(const std::array<T, N>& a, const std::array<T, N>& b);

	/// Assignment operator
	/// \param motion Linear motion group to be copied
	LinearMotionND<T, N>& operator=(const LinearMotionND<T, N>& motion);

	/// Move assignment operator
	/// \param motion Linear motion group to be moved
	LinearMotionND<T, N>& operator=(LinearMotionND<T, N>&& motion);

	/// Convert from LinearMotion to an Interval
	/// \return the conversion of the ND LinearMotion to an ND Interval
	IntervalND<T, N> toInterval() const;

	/// \param motion the linear motion group to be tested
	/// \param epsilon the nearness parameter
	/// \return true if each linear motion in the input group is approximately equal to its correspondent
	/// element in motion.
	bool isApprox(const LinearMotionND<T, N>& motion, const T& epsilon) const;

	/// \param motion the linear motion group to be tested
	/// \return true if the current linear motion group is identical to the input group
	bool operator==(const LinearMotionND<T, N>& motion) const;

	/// \param motion the linear motion group to be tested
	/// \return true if the current linear motion group is not identical to the input group
	bool operator!=(const LinearMotionND<T, N>& motion) const;

	/// @{
	/// Standard arithmetic operators extended to interval groups
	LinearMotionND<T, N> operator+(const LinearMotionND<T, N>& m) const;
	LinearMotionND<T, N>& operator+=(const LinearMotionND<T, N>& m);
	LinearMotionND<T, N> operator-(const LinearMotionND<T, N>& m) const;
	LinearMotionND<T, N>& operator-=(const LinearMotionND<T, N>& m);
	/// @}

	/// Standard arithmetic operators extended to interval groups
	/// \note Multiplication and division operators by their nature do not
	/// preserve time ordering and so the return value is an IntervalND instead
	/// of a LinearMotionND
	IntervalND<T, N> operator*(const LinearMotionND<T, N>& m) const;

	/// Standard arithmetic operators extended to interval groups
	/// \note Multiplication and division operators by their nature do not
	/// preserve time ordering and so the return value is an IntervalND instead
	/// of a LinearMotionND
	/// \exception if any component of interval includes 0
	IntervalND<T, N> operator/(const LinearMotionND<T, N>& m) const;

	/// \param motion the input linear motion group
	/// \return the interval dot product of the current group and interval
	Interval<T> dotProduct(const LinearMotionND<T, N>& motion) const;

	/// \param i the selector for the linear motion to be returned
	/// \return the ith interval in the current group
	/// \exception thrown if the requested axis is < 0 or greater than N - 1
	const LinearMotion<T>& getAxis(int i) const;

	/// \param start [out] the starting points of the linear motion group as an N dimension array.
	void getStart(std::array<T, N>* start) const;

	/// \param end [out] the ending points of the linear motion group as an N dimension array.
	void getEnd(std::array<T, N>* end) const;

	/// \return the linear motion from the starting point to the midpoint
	LinearMotionND<T, N> firstHalf() const;

	/// \return the linear motion from the midpoint to the ending point
	LinearMotionND<T, N> secondHalf() const;

private:
	/// The N dimensional group of linear motions
	std::array<LinearMotion<T>, N> m_motion;
};

/// LinearMotionND<T, 3> specializes the LinearMotionND<T, N> class for 3 dimensions
///
/// \sa LinearMotion<T>, LinearMotionND<T, N> and IntervalArthmetic<T, 3>
template <class T>
class LinearMotionND<T, 3>
{
public:
	/// Typedef for a vector 3 return
	typedef Eigen::Matrix<T, 3, 1> Vector3;

	/// Constructor
	LinearMotionND();

	/// Constructor
	/// \param x array of 3 linear motions to be copied into the group
	explicit LinearMotionND(const std::array<LinearMotion<T>, 3>& x);

	/// Constructor
	/// \param a first linear motion to be added to the 3 group
	/// \param b second linear motion to be added to the 3 group
	/// \param c third linear motion to be added to the 3 group
	LinearMotionND(const LinearMotion<T>& a, const LinearMotion<T>& b, const LinearMotion<T>& c);

	/// Copy constructor
	/// \param motion linear motion 3 group to be copied
	LinearMotionND(const LinearMotionND<T, 3>& motion);

	/// Move constructor
	/// \param motion Linear motion to be copied
	LinearMotionND(LinearMotionND<T, 3>&& motion);

	/// Constructor
	/// \param start array of 3 values to be used as the respective starts for the linear motion entries.
	/// \param end array of 3 values to be used as the respective ends for the linear motion entries.
	LinearMotionND(const std::array<T, 3>& start, const std::array<T, 3>& end);

	/// Constructor
	/// \param start array of 3 values to be used as the respective starts for the linear motion entries.
	/// \param end array of 3 values to be used as the respective ends for the linear motion entries.
	LinearMotionND(const Vector3& start, const Vector3& end);

	/// Assignment operator
	/// \param motion Linear motion 3 group to be copied
	LinearMotionND<T, 3>& operator=(const LinearMotionND<T, 3>& motion);

	/// Move assignment operator
	/// \param motion Linear motion 3 group to be moved
	LinearMotionND<T, 3>& operator=(LinearMotionND<T, 3>&& motion);

	/// Convert from LinearMotion to an Interval
	/// \return the conversion of the 3D LinearMotion to a 3D Interval
	IntervalND<T, 3> toInterval() const;

	/// \param motion the motion group to be tested
	/// \param epsilon the nearness parameter
	/// \return true if each linear motion in the input group is approximately equal to its correspondent
	/// element in motion.
	bool isApprox(const LinearMotionND<T, 3>& motion, const T& epsilon) const;

	/// \param motion the linear motion group to be tested
	/// \return true if the current linear motion 3 group is identical to the input 3 group motion
	bool operator==(const LinearMotionND<T, 3>& motion) const;

	/// \param motion the linear motion group to be tested
	/// \return true if the current linear motion 3 group is not identical to the input 3 group motion.
	bool operator!=(const LinearMotionND<T, 3>& motion) const;

	/// @{
	/// Standard arithmetic operators extended to 3 interval groups
	LinearMotionND<T, 3> operator+(const LinearMotionND<T, 3>& m) const;
	LinearMotionND<T, 3>& operator+=(const LinearMotionND<T, 3>& m);
	LinearMotionND<T, 3> operator-(const LinearMotionND<T, 3>& m) const;
	LinearMotionND<T, 3>& operator-=(const LinearMotionND<T, 3>& m);
	/// @}

	/// Standard arithmetic operators extended to interval groups
	/// \note Multiplication and division operators by their nature do not
	/// preserve time ordering and so the return value is an IntervalND instead
	/// of a LinearMotionND
	IntervalND<T, 3> operator*(const LinearMotionND<T, 3>& m) const;

	/// Standard arithmetic operators extended to interval groups
	/// \note Multiplication and division operators by their nature do not
	/// preserve time ordering and so the return value is an IntervalND instead
	/// of a LinearMotionND
	/// \exception if any component of interval includes 0
	IntervalND<T, 3> operator/(const LinearMotionND<T, 3>& m) const;

	/// \param motion the input linear motion 3 group
	/// \param range the range over which the dot product is to be evaluated.
	/// \return the interval dot product of the current 3 group and interval evaluated over the interval range.
	Interval<T> dotProduct(const LinearMotionND<T, 3>& motion, const Interval<T>& range) const;

	/// \param motion the input linear motion 3 group
	/// \param range the range over which the cross product is to be evaluated.
	/// \return the interval cross product of the current 3 group and interval evaluated over the interval range.
	IntervalND<T, 3> crossProduct(const LinearMotionND<T, 3>& motion, const Interval<T>& range) const;

	/// \return the square of the linear motion magnitude for the current 3 group
	Interval<T> magnitudeSquared(const Interval<T>& range) const;

	/// \return the linear motion magnitude for the current 3 group
	Interval<T> magnitude(const Interval<T>& range) const;

	/// \param i the selector for the linear motion to be returned
	/// \return the ith linear motion in the current 3 group
	/// \exception thrown if the requested axis is < 0 or greater than 2
	const LinearMotion<T>& getAxis(int i) const;

	/// \param start [out] the start of the linear motion 3D as a 3 value array
	void getStart(std::array<T, 3>* start) const;

	/// \param end [out] the end of the linear motion 3D as a 3 value array
	void getEnd(std::array<T, 3>* end) const;

	/// \return the start of the linear motion 3D as a 3 Vector
	Vector3 getStart() const;

	/// \return the end of the linear motion 3D as a 3 Vector
	Vector3 getEnd() const;

	/// \param t the parametric value at which to evaluate the linear motion
	/// \return the value of the linear motion 3D at time t as a 3 Vector
	Vector3 atTime(const T& t) const;

	/// \return the linear motion 3D from the start to the midpoint
	LinearMotionND<T, 3> firstHalf() const;

	/// \return the linear motion 3D from the midpoint to the start
	LinearMotionND<T, 3> secondHalf() const;

private:
	/// The 3 dimensional group of linear motions
	std::array<LinearMotion<T>, 3> m_motion;
};

// Linear motion utilities

/// Write a textual version of a linear motion to an output stream
/// \tparam T underlying type of the linear motion
/// \param o the ostream to be written to
/// \param motion the motion to write
/// \return the active ostream
template <typename T>
std::ostream& operator<<(std::ostream& o, const LinearMotion<T>& motion);

// Linear motion ND utilities

/// Write a textual version of a linear motion group to an output stream
/// \tparam T underlying type of the linear motion
/// \tparam N number of linear motions in the group
/// \param o the ostream to be written to
/// \param motion the motion group to write
/// \return the active ostream
template <typename T, int N>
std::ostream& operator<<(std::ostream& o, const LinearMotionND<T, N>& motion);

// Linear motion 3D utilities

/// Calculate an analytic dot product as a Polynomial
/// \tparam T underlying type of the linear motion
/// \param a the first linear motion 3 group
/// \param b the second linear motion 3 group
/// \return the dot product in a polynomial representation
template <class T>
Polynomial<T, 2> analyticDotProduct(const LinearMotionND<T, 3>& a, const LinearMotionND<T, 3>& b);

/// Calculate a single axis of an analytic cross product as a Polynomial
/// \tparam T underlying type of the linear motion
/// \tparam A axis to generate: 0 = X, 1=Y, 2=Z
/// \param a the first linear motion 3 group
/// \param b the second linear motion 3 group
/// \return the selected axis in a polynomial representation
template <class T, int A>
Polynomial<T, 2> analyticCrossProductAxis(const LinearMotionND<T, 3>& a, const LinearMotionND<T, 3>& b);

/// Calculate the X axis of an analytic cross product as a Polynomial
/// \tparam T underlying type of the linear motion
/// \param a the first linear motion 3 group
/// \param b the second linear motion 3 group
/// \return the X axis in a polynomial representation
template <class T>
Polynomial<T, 2> analyticCrossProductXAxis(const LinearMotionND<T, 3>& a, const LinearMotionND<T, 3>& b);

/// Calculate the Y axis of an analytic cross product as a Polynomial
/// \tparam T underlying type of the linear motion
/// \param a the first linear motion 3 group
/// \param b the second linear motion 3 group
/// \return the Y axis in a polynomial representation
template <class T>
Polynomial<T, 2> analyticCrossProductYAxis(const LinearMotionND<T, 3>& a, const LinearMotionND<T, 3>& b);

/// Calculate the Z axis of an analytic cross product as a Polynomial
/// \tparam T underlying type of the linear motion
/// \param a the first linear motion 3 group
/// \param b the second linear motion 3 group
/// \return the Z axis in a polynomial representation
template <class T>
Polynomial<T, 2> analyticCrossProductZAxis(const LinearMotionND<T, 3>& a, const LinearMotionND<T, 3>& b);

/// Calculate an analytic cross product as a Polynomial
/// \tparam T underlying type of the linear motion
/// \param a the first linear motion 3 group
/// \param b the second linear motion 3 group
/// \param [out] resultXAxis the X axis in a polynomial representation
/// \param [out] resultYAxis the Y axis in a polynomial representation
/// \param [out] resultZAxis the Z axis in a polynomial representation
template <class T>
void analyticCrossProduct(const LinearMotionND<T, 3>& a, const LinearMotionND<T, 3>& b,
						  Polynomial<T, 2>* resultXAxis, Polynomial<T, 2>* resultYAxis, Polynomial<T, 2>* resultZAxis);

/// Calculate an analytic cross product as a Polynomial, as a polynomial whose value for t=0..1 is
/// the value of the triple product.
/// \tparam T underlying type of the linear motion
/// \param a the first linear motion 3 group
/// \param b the second linear motion 3 group
/// \param c the third linear motion 3 group
/// \return a 3rd order polynomial representation of the triple product
template <class T>
Polynomial<T, 3> analyticTripleProduct(const LinearMotionND<T, 3>& a, const LinearMotionND<T, 3>& b,
									   const LinearMotionND<T, 3>& c);

/// Calculate the triple product, as an interval.
/// \tparam T underlying type of the linear motion
/// \param a the first linear motion 3 group
/// \param b the second linear motion 3 group
/// \param c the third linear motion 3 group
/// \param range the range over which the triple product is to be evaluated
/// \return an interval representation of the triple product
template <class T>
Interval<T> tripleProduct(const LinearMotionND<T, 3>& a, const LinearMotionND<T, 3>& b,
						  const LinearMotionND<T, 3>& c, const Interval<T>& range);

/// Calculate the magnitude squared of a linear motion 3 group as a polynomial
/// \tparam T underlying type of the linear motion
/// \param motion the linear motion 3 group
/// \return the magnitude squared of the linear motion as a polynomial
template <class T>
Polynomial<T, 2> analyticMagnitudeSquared(const LinearMotionND<T, 3>& motion);

}; // Math
}; // SurgSim

#include "SurgSim/Math/LinearMotionArithmetic-inl.h"

#endif // SURGSIM_MATH_LINEARMOTIONARITHMETIC_H