/usr/include/SurgSim/Math/Geometry.h is in libopensurgsim-dev 0.7.0-6ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 | // This file is a part of the OpenSurgSim project.
// Copyright 2013-2015, SimQuest Solutions Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SURGSIM_MATH_GEOMETRY_H
#define SURGSIM_MATH_GEOMETRY_H
#include <boost/container/static_vector.hpp>
#include <Eigen/Core>
#include <Eigen/Geometry>
#include "SurgSim/Framework/Log.h"
#include "SurgSim/Math/Polynomial.h"
#include "SurgSim/Math/Vector.h"
/// \file Geometry.h a collection of functions that calculation geometric properties of various basic geometric shapes.
/// Point, LineSegment, Plane, Triangle. All functions are templated for the accuracy of the calculation
/// (float/double). There are also three kinds of epsilon defined that are used on a case by case basis.
/// In general all function here will return a floating point or boolean value and take a series of output
/// parameters. When those outputs cannot be calculated their values will be set to NAN.
/// This functions are meant as a basic layer that will be wrapped with calls from structures mainting more
/// state information about the primitives they are handling.
/// As a convention we are using a plane equation in the form nx + d = 0
/// \note HS-2013-may-07 Even though some of the names in this file do not agree with the coding standards in
/// regard to the use of verbs for functions it was determined that other phrasing would not necessarily
/// improve the readability or expressiveness of the function names.
namespace SurgSim
{
namespace Math
{
namespace Geometry
{
/// Used as epsilon for general distance calculations
static const double DistanceEpsilon = 1e-10;
/// Used as epsilon for general distance calculations with squared distances
static const double SquaredDistanceEpsilon = 1e-10;
/// Epsilon used in angular comparisons
static const double AngularEpsilon = 1e-10;
/// Used as epsilon for scalar comparisons
static const double ScalarEpsilon = 1e-10;
}
/// Calculate the barycentric coordinates of a point with respect to a line segment.
/// \tparam T Floating point type of the calculation, can usually be inferred.
/// \tparam MOpt Eigen Matrix options, can usually be inferred.
/// \param pt Vertex of the point.
/// \param sv0, sv1 Vertices of the line segment.
/// \param [out] coordinates Barycentric coordinates.
/// \return bool true on success, false if two or more if the line segment is considered degenerate
/// \note The point need not be on the line segment, in which case, the barycentric coordinate of the projection
/// is calculated.
template <class T, int MOpt> inline
bool barycentricCoordinates(const Eigen::Matrix<T, 3, 1, MOpt>& pt,
const Eigen::Matrix<T, 3, 1, MOpt>& sv0,
const Eigen::Matrix<T, 3, 1, MOpt>& sv1,
Eigen::Matrix<T, 2, 1, MOpt>* coordinates)
{
const Eigen::Matrix<T, 3, 1, MOpt> line = sv1 - sv0;
const T length2 = line.squaredNorm();
if (length2 < Geometry::SquaredDistanceEpsilon)
{
coordinates->setConstant((std::numeric_limits<double>::quiet_NaN()));
return false;
}
(*coordinates)[1] = (pt - sv0).dot(line) / length2;
(*coordinates)[0] = static_cast<T>(1) - (*coordinates)[1];
return true;
}
/// Calculate the barycentric coordinates of a point with respect to a triangle.
/// \pre The normal must be unit length
/// \pre The triangle vertices must be in counter clockwise order in respect to the normal
/// \tparam T Floating point type of the calculation, can usually be inferred.
/// \tparam MOpt Eigen Matrix options, can usually be inferred.
/// \param pt Vertex of the point.
/// \param tv0, tv1, tv2 Vertices of the triangle in counter clockwise order in respect to the normal.
/// \param tn Normal of the triangle (yes must be of norm 1 and a,b,c CCW).
/// \param [out] coordinates Barycentric coordinates.
/// \return bool true on success, false if two or more if the triangle is considered degenerate
template <class T, int MOpt> inline
bool barycentricCoordinates(const Eigen::Matrix<T, 3, 1, MOpt>& pt,
const Eigen::Matrix<T, 3, 1, MOpt>& tv0,
const Eigen::Matrix<T, 3, 1, MOpt>& tv1,
const Eigen::Matrix<T, 3, 1, MOpt>& tv2,
const Eigen::Matrix<T, 3, 1, MOpt>& tn,
Eigen::Matrix<T, 3, 1, MOpt>* coordinates)
{
const T signedTriAreaX2 = ((tv1 - tv0).cross(tv2 - tv0)).dot(tn);
if (signedTriAreaX2 < Geometry::SquaredDistanceEpsilon)
{
// SQ_ASSERT_WARNING(false, "Cannot compute barycentric coords (degenetrate triangle), assigning center");
coordinates->setConstant((std::numeric_limits<double>::quiet_NaN()));
return false;
}
(*coordinates)[0] = ((tv1 - pt).cross(tv2 - pt)).dot(tn) / signedTriAreaX2;
(*coordinates)[1] = ((tv2 - pt).cross(tv0 - pt)).dot(tn) / signedTriAreaX2;
(*coordinates)[2] = 1 - (*coordinates)[0] - (*coordinates)[1];
return true;
}
/// Calculate the barycentric coordinates of a point with respect to a triangle.
/// Please note that each time you use this call the normal of the triangle will be
/// calculated, if you convert more than one coordinate against this triangle, precalculate
/// the normal and use the other version of this function
/// \tparam T Floating point type of the calculation, can usually be inferred.
/// \tparam MOpt Eigen Matrix options, can usually be inferred.
/// \param pt Vertex of the point.
/// \param tv0, tv1, tv2 Vertices of the triangle.
/// \param [out] coordinates The Barycentric coordinates.
/// \return bool true on success, false if the triangle is considered degenerate
template <class T, int MOpt> inline
bool barycentricCoordinates(
const Eigen::Matrix<T, 3, 1, MOpt>& pt,
const Eigen::Matrix<T, 3, 1, MOpt>& tv0,
const Eigen::Matrix<T, 3, 1, MOpt>& tv1,
const Eigen::Matrix<T, 3, 1, MOpt>& tv2,
Eigen::Matrix<T, 3, 1, MOpt>* coordinates)
{
Eigen::Matrix<T, 3, 1, MOpt> tn = (tv1 - tv0).cross(tv2 - tv0);
double norm = tn.norm();
if (norm < Geometry::DistanceEpsilon)
{
coordinates->setConstant((std::numeric_limits<double>::quiet_NaN()));
return false;
}
tn /= norm;
return barycentricCoordinates(pt, tv0, tv1, tv2, tn, coordinates);
}
/// Check if a point is inside a triangle
/// \note Use barycentricCoordinates() if you need the coordinates
/// \pre The normal must be unit length
/// \pre The triangle vertices must be in counter clockwise order in respect to the normal
/// \tparam T Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt Eigen Matrix options, can usually be inferred.
/// \param pt Vertex of the point.
/// \param tv0, tv1, tv2 Vertices of the triangle, must be in CCW.
/// \param tn Normal of the triangle (yes must be of norm 1 and a,b,c CCW).
/// \return true if pt lies inside the triangle tv0, tv1, tv2, false otherwise.
template <class T, int MOpt> inline
bool isPointInsideTriangle(
const Eigen::Matrix<T, 3, 1, MOpt>& pt,
const Eigen::Matrix<T, 3, 1, MOpt>& tv0,
const Eigen::Matrix<T, 3, 1, MOpt>& tv1,
const Eigen::Matrix<T, 3, 1, MOpt>& tv2,
const Eigen::Matrix<T, 3, 1, MOpt>& tn)
{
Eigen::Matrix<T, 3, 1, MOpt> baryCoords;
bool result = barycentricCoordinates(pt, tv0, tv1, tv2, tn, &baryCoords);
return (result &&
baryCoords[0] >= -Geometry::ScalarEpsilon &&
baryCoords[1] >= -Geometry::ScalarEpsilon &&
baryCoords[2] >= -Geometry::ScalarEpsilon);
}
/// Check if a point is inside a triangle.
/// \note Use barycentricCoordinates() if you need the coordinates.
/// Please note that the normal will be calculated each time you use this call, if you are doing more than one
/// test with the same triangle, precalculate the normal and pass it. Into the other version of this function
/// \tparam T Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt Eigen Matrix options, can usually be inferred.
/// \param pt Vertex of the point.
/// \param tv0, tv1, tv2 Vertices of the triangle, must be in CCW.
/// \return true if pt lies inside the triangle tv0, tv1, tv2, false otherwise.
template <class T, int MOpt> inline
bool isPointInsideTriangle(
const Eigen::Matrix<T, 3, 1, MOpt>& pt,
const Eigen::Matrix<T, 3, 1, MOpt>& tv0,
const Eigen::Matrix<T, 3, 1, MOpt>& tv1,
const Eigen::Matrix<T, 3, 1, MOpt>& tv2)
{
Eigen::Matrix<T, 3, 1, MOpt> baryCoords;
bool result = barycentricCoordinates(pt, tv0, tv1, tv2, &baryCoords);
return (result && baryCoords[0] >= -Geometry::ScalarEpsilon &&
baryCoords[1] >= -Geometry::ScalarEpsilon &&
baryCoords[2] >= -Geometry::ScalarEpsilon);
}
/// Check if a point is on the edge of a triangle.
/// \note Use barycentricCoordinates() if you need the coordinates.
/// \tparam T Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt Eigen Matrix options, can usually be inferred.
/// \param pt Vertex of the point.
/// \param tv0, tv1, tv2 Vertices of the triangle, must be in CCW.
/// \param tn Normal of the triangle (must be of norm 1 and a,b,c CCW).
/// \return true if pt lies on the edge of the triangle tv0, tv1, tv2, false otherwise.
template <class T, int MOpt> inline
bool isPointOnTriangleEdge(
const Eigen::Matrix<T, 3, 1, MOpt>& pt,
const Eigen::Matrix<T, 3, 1, MOpt>& tv0,
const Eigen::Matrix<T, 3, 1, MOpt>& tv1,
const Eigen::Matrix<T, 3, 1, MOpt>& tv2,
const Eigen::Matrix<T, 3, 1, MOpt>& tn)
{
Eigen::Matrix<T, 3, 1, MOpt> baryCoords;
bool result = barycentricCoordinates(pt, tv0, tv1, tv2, tn, &baryCoords);
return (result && baryCoords[0] >= -Geometry::ScalarEpsilon &&
baryCoords[1] >= -Geometry::ScalarEpsilon &&
baryCoords[2] >= -Geometry::ScalarEpsilon &&
baryCoords.minCoeff() <= Geometry::ScalarEpsilon);
}
/// Check if a point is on the edge of a triangle.
/// \note Use barycentricCoordinates() if you need the coordinates.
/// Please note that the normal will be calculated each time you use this call, if you are doing more than one
/// test with the same triangle, precalculate the normal and pass it. Into the other version of this function
/// \tparam T Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt Eigen Matrix options, can usually be inferred.
/// \param pt Vertex of the point.
/// \param tv0, tv1, tv2 Vertices of the triangle, must be in CCW.
/// \return true if pt lies on the edge of the triangle tv0, tv1, tv2, false otherwise.
template <class T, int MOpt> inline
bool isPointOnTriangleEdge(
const Eigen::Matrix<T, 3, 1, MOpt>& pt,
const Eigen::Matrix<T, 3, 1, MOpt>& tv0,
const Eigen::Matrix<T, 3, 1, MOpt>& tv1,
const Eigen::Matrix<T, 3, 1, MOpt>& tv2)
{
Eigen::Matrix<T, 3, 1, MOpt> baryCoords;
bool result = barycentricCoordinates(pt, tv0, tv1, tv2, &baryCoords);
return (result && baryCoords[0] >= -Geometry::ScalarEpsilon &&
baryCoords[1] >= -Geometry::ScalarEpsilon &&
baryCoords[2] >= -Geometry::ScalarEpsilon &&
baryCoords.minCoeff() <= Geometry::ScalarEpsilon);
}
/// Check whether the points are coplanar.
/// \tparam T Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt Eigen Matrix options, can usually be inferred.
/// \param a, b, c, d Points to check for coplanarity.
/// \return true if the points are coplanar.
template <class T, int MOpt> inline
bool isCoplanar(
const Eigen::Matrix<T, 3, 1, MOpt>& a,
const Eigen::Matrix<T, 3, 1, MOpt>& b,
const Eigen::Matrix<T, 3, 1, MOpt>& c,
const Eigen::Matrix<T, 3, 1, MOpt>& d)
{
return std::abs((c - a).dot((b - a).cross(d - c))) < Geometry::ScalarEpsilon;
}
/// Calculate the normal distance between a point and a line.
/// \param pt The input point.
/// \param v0,v1 Two vertices on the line.
/// \param [out] result The point projected onto the line.
/// \return The normal distance between the point and the line
template <class T, int MOpt> inline
T distancePointLine(
const Eigen::Matrix<T, 3, 1, MOpt>& pt,
const Eigen::Matrix<T, 3, 1, MOpt>& v0,
const Eigen::Matrix<T, 3, 1, MOpt>& v1,
Eigen::Matrix<T, 3, 1, MOpt>* result)
{
// The lines is parametrized by:
// q = v0 + lambda0 * (v1-v0)
// and we solve for pq.v01 = 0;
Eigen::Matrix<T, 3, 1, MOpt> v01 = v1 - v0;
T v01_norm2 = v01.squaredNorm();
if (v01_norm2 <= Geometry::SquaredDistanceEpsilon)
{
*result = v0; // closest point is either
T pv_norm2 = (pt - v0).squaredNorm();
return sqrt(pv_norm2);
}
T lambda = (v01).dot(pt - v0);
*result = v0 + lambda * v01 / v01_norm2;
return (*result - pt).norm();
}
/// Point segment distance, if the projection of the closest point is not within the segments, the
/// closest segment point is used for the distance calculation.
/// \tparam T Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt Eigen Matrix options, can usually be inferred.
/// \param pt The input point
/// \param sv0,sv1 The segment extremities.
/// \param [out] result Either the projection onto the segment or one of the 2 vertices.
/// \return The distance of the point from the segment.
template <class T, int MOpt> inline
T distancePointSegment(
const Eigen::Matrix<T, 3, 1, MOpt>& pt,
const Eigen::Matrix<T, 3, 1, MOpt>& sv0,
const Eigen::Matrix<T, 3, 1, MOpt>& sv1,
Eigen::Matrix<T, 3, 1, MOpt>* result)
{
Eigen::Matrix<T, 3, 1, MOpt> v01 = sv1 - sv0;
T v01Norm2 = v01.squaredNorm();
if (v01Norm2 <= Geometry::SquaredDistanceEpsilon)
{
*result = sv0; // closest point is either
return (pt - sv0).norm();
}
T lambda = v01.dot(pt - sv0);
if (lambda <= 0)
{
*result = sv0;
}
else if (lambda >= v01Norm2)
{
*result = sv1;
}
else
{
*result = sv0 + lambda * v01 / v01Norm2;
}
return (*result - pt).norm();
}
/// Determine the distance between two lines
/// \tparam T Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt Eigen Matrix options, can usually be inferred.
/// \param l0v0, l0v1 Points on Line 0.
/// \param l1v0, l1v1 Points on Line 1.
/// \param [out] pt0 The closest point on line 0.
/// \param [out] pt1 The closest point on line 1.
/// \return The normal distance between the two given lines i.e. (pt0 - pt1).norm()
/// \note We are using distancePointSegment for the degenerate cases as opposed to
/// distancePointLine, why is that ??? (HS-2013-apr-26)
template <class T, int MOpt> inline
T distanceLineLine(
const Eigen::Matrix<T, 3, 1, MOpt>& l0v0,
const Eigen::Matrix<T, 3, 1, MOpt>& l0v1,
const Eigen::Matrix<T, 3, 1, MOpt>& l1v0,
const Eigen::Matrix<T, 3, 1, MOpt>& l1v1,
Eigen::Matrix<T, 3, 1, MOpt>* pt0,
Eigen::Matrix<T, 3, 1, MOpt>* pt1)
{
// Based on the outline of http://www.geometrictools.com/Distance.html, also refer to
// http://geomalgorithms.com/a07-_distance.html for a geometric interpretation
// The lines are parametrized by:
// p0 = l0v0 + lambda0 * (l0v1-l0v0)
// p1 = l1v0 + lambda1 * (l1v1-l1v0)
// and we solve for p0p1 perpendicular to both lines
T lambda0, lambda1;
Eigen::Matrix<T, 3, 1, MOpt> l0v01 = l0v1 - l0v0;
T a = l0v01.squaredNorm();
if (a <= Geometry::SquaredDistanceEpsilon)
{
// Degenerate line 0
*pt0 = l0v0;
return distancePointSegment(l0v0, l1v0, l1v1, pt1);
}
Eigen::Matrix<T, 3, 1, MOpt> l1v01 = l1v1 - l1v0;
T b = -l0v01.dot(l1v01);
T c = l1v01.squaredNorm();
if (c <= Geometry::SquaredDistanceEpsilon)
{
// Degenerate line 1
*pt1 = l1v0;
return distancePointSegment(l1v0, l0v0, l0v1, pt0);
}
Eigen::Matrix<T, 3, 1, MOpt> l0v0_l1v0 = l0v0 - l1v0;
T d = l0v01.dot(l0v0_l1v0);
T e = -l1v01.dot(l0v0_l1v0);
T ratio = a * c - b * b;
if (std::abs(ratio) <= Geometry::ScalarEpsilon)
{
// parallel case
lambda0 = 0;
lambda1 = e / c;
}
else
{
// non-parallel case
T inv_ratio = T(1) / ratio;
lambda0 = (b * e - c * d) * inv_ratio;
lambda1 = (b * d - a * e) * inv_ratio;
}
*pt0 = l0v0 + lambda0 * l0v01;
*pt1 = l1v0 + lambda1 * l1v01;
return ((*pt0) - (*pt1)).norm();
}
/// Distance between two segments, if the project of the closest point is not on the opposing segment,
/// the segment endpoints will be used for the distance calculation
/// \tparam T Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt Eigen Matrix options, can usually be inferred.
/// \param s0v0, s0v1 Segment 0 Extremities.
/// \param s1v0, s1v1 Segment 1 Extremities.
/// \param [out] pt0 Closest point on segment 0
/// \param [out] pt1 Closest point on segment 1
/// \param [out] s0t Abscissa at the point of intersection on Segment 0 (s0v0 + t * (s0v1 - s0v0)).
/// \param [out] s1t Abscissa at the point of intersection on Segment 0 (s1v0 + t * (s1v1 - s1v0)).
/// \return Distance between the segments, i.e. (pt0 - pt1).norm()
template <class T, int MOpt>
T distanceSegmentSegment(
const Eigen::Matrix<T, 3, 1, MOpt>& s0v0,
const Eigen::Matrix<T, 3, 1, MOpt>& s0v1,
const Eigen::Matrix<T, 3, 1, MOpt>& s1v0,
const Eigen::Matrix<T, 3, 1, MOpt>& s1v1,
Eigen::Matrix<T, 3, 1, MOpt>* pt0,
Eigen::Matrix<T, 3, 1, MOpt>* pt1,
T* s0t = nullptr,
T* s1t = nullptr)
{
// Based on the outline of http://www.geometrictools.com/Documentation/DistanceLine3Line3.pdf, also refer to
// http://geomalgorithms.com/a07-_distance.html for a geometric interpretation
// The segments are parametrized by:
// p0 = l0v0 + s * (l0v1-l0v0), with s between 0 and 1
// p1 = l1v0 + t * (l1v1-l1v0), with t between 0 and 1
// We are minimizing Q(s, t) = as*as + 2bst + ct*ct + 2ds + 2et + f,
Eigen::Matrix<T, 3, 1, MOpt> s0v01 = s0v1 - s0v0;
T a = s0v01.squaredNorm();
if (a <= Geometry::SquaredDistanceEpsilon)
{
// Degenerate segment 0
*pt0 = s0v0;
return distancePointSegment<T>(s0v0, s1v0, s1v1, pt1);
}
Eigen::Matrix<T, 3, 1, MOpt> s1v01 = s1v1 - s1v0;
T b = -s0v01.dot(s1v01);
T c = s1v01.squaredNorm();
if (c <= Geometry::SquaredDistanceEpsilon)
{
// Degenerate segment 1
*pt1 = s1v1;
return distancePointSegment<T>(s1v0, s0v0, s0v1, pt0);
}
Eigen::Matrix<T, 3, 1, MOpt> tempLine = s0v0 - s1v0;
T d = s0v01.dot(tempLine);
T e = -s1v01.dot(tempLine);
T ratio = a * c - b * b;
T s, t; // parametrization variables (do not initialize)
int region = -1;
T tmp;
// Non-parallel case
if (1.0 - std::abs(s0v01.normalized().dot(s1v01.normalized())) >= Geometry::SquaredDistanceEpsilon)
{
// Get the region of the global minimum in the s-t space based on the line-line solution
// s=0 s=1
// ^
// | |
// 4 | 3 | 2
// ----|-------|------- t=1
// | |
// 5 | 0 | 1
// | |
// ----|-------|-------> t=0
// | |
// 6 | 7 | 8
// | |
//
s = b * e - c * d;
t = b * d - a * e;
if (s >= 0)
{
if (s <= ratio)
{
if (t >= 0)
{
if (t <= ratio)
{
region = 0;
}
else
{
region = 3;
}
}
else
{
region = 7;
}
}
else
{
if (t >= 0)
{
if (t <= ratio)
{
region = 1;
}
else
{
region = 2;
}
}
else
{
region = 8;
}
}
}
else
{
if (t >= 0)
{
if (t <= ratio)
{
region = 5;
}
else
{
region = 4;
}
}
else
{
region = 6;
}
}
enum edge_type { s0, s1, t0, t1, edge_skip, edge_invalid };
edge_type edge = edge_invalid;
switch (region)
{
case 0:
// Global minimum inside [0,1] [0,1]
s /= ratio;
t /= ratio;
edge = edge_skip;
break;
case 1:
edge = s1;
break;
case 2:
// Q_s(1,1)/2 = a+b+d
if (a + b + d > 0)
{
edge = t1;
}
else
{
edge = s1;
}
break;
case 3:
edge = t1;
break;
case 4:
// Q_s(0,1)/2 = b+d
if (b + d > 0)
{
edge = s0;
}
else
{
edge = t1;
}
break;
case 5:
edge = s0;
break;
case 6:
// Q_s(0,0)/2 = d
if (d > 0)
{
edge = s0;
}
else
{
edge = t0;
}
break;
case 7:
edge = t0;
break;
case 8:
// Q_s(1,0)/2 = a+d
if (a + d > 0)
{
edge = t0;
}
else
{
edge = s1;
}
break;
default:
break;
}
switch (edge)
{
case s0:
// F(t) = Q(0,t), F?(t) = 2*(e+c*t)
// F?(T) = 0 when T = -e/c, then clamp between 0 and 1 (c always >= 0)
s = 0;
tmp = e;
if (tmp > 0)
{
t = 0;
}
else if (-tmp > c)
{
t = 1;
}
else
{
t = -tmp / c;
}
break;
case s1:
// F(t) = Q(1,t), F?(t) = 2*((b+e)+c*t)
// F?(T) = 0 when T = -(b+e)/c, then clamp between 0 and 1 (c always >= 0)
s = 1;
tmp = b + e;
if (tmp > 0)
{
t = 0;
}
else if (-tmp > c)
{
t = 1;
}
else
{
t = -tmp / c;
}
break;
case t0:
// F(s) = Q(s,0), F?(s) = 2*(d+a*s) =>
// F?(S) = 0 when S = -d/a, then clamp between 0 and 1 (a always >= 0)
t = 0;
tmp = d;
if (tmp > 0)
{
s = 0;
}
else if (-tmp > a)
{
s = 1;
}
else
{
s = -tmp / a;
}
break;
case t1:
// F(s) = Q(s,1), F?(s) = 2*(b+d+a*s) =>
// F?(S) = 0 when S = -(b+d)/a, then clamp between 0 and 1 (a always >= 0)
t = 1;
tmp = b + d;
if (tmp > 0)
{
s = 0;
}
else if (-tmp > a)
{
s = 1;
}
else
{
s = -tmp / a;
}
break;
case edge_skip:
break;
default:
break;
}
}
else
// Parallel case
{
if (b > 0)
{
// Segments have different directions
if (d >= 0)
{
// 0-0 end points since s-segment 0 less than t-segment 0
s = 0;
t = 0;
}
else if (-d <= a)
{
// s-segment 0 end-point in the middle of the t 0-1 segment, get distance
s = -d / a;
t = 0;
}
else
{
// s-segment 1 is definitely closer
s = 1;
tmp = a + d;
if (-tmp >= b)
{
t = 1;
}
else
{
t = -tmp / b;
}
}
}
else
{
// Both segments have the same dir
if (-d >= a)
{
// 1-0
s = 1;
t = 0;
}
else if (d <= 0)
{
// mid-0
s = -d / a;
t = 0;
}
else
{
s = 0;
// 1-mid
if (d >= -b)
{
t = 1;
}
else
{
t = -d / b;
}
}
}
}
*pt0 = s0v0 + s * (s0v01);
*pt1 = s1v0 + t * (s1v01);
if (s0t != nullptr && s1t != nullptr)
{
*s0t = s;
*s1t = t;
}
return ((*pt1) - (*pt0)).norm();
}
/// Calculate the normal distance of a point from a triangle, the resulting point will be on the edge of the triangle
/// if the projection of the point is not inside the triangle.
/// \tparam T Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt Eigen Matrix options, can usually be inferred.
/// \param pt The point that is being measured.
/// \param tv0, tv1, tv2 The vertices of the triangle.
/// \param [out] result The point on the triangle that is closest to pt, if the projection of pt onto the triangle.
/// plane is not inside the triangle the closest point on the edge will be used.
/// \return The distance between the point and the triangle, i.e (result - pt).norm()
template <class T, int MOpt> inline
T distancePointTriangle(
const Eigen::Matrix<T, 3, 1, MOpt>& pt,
const Eigen::Matrix<T, 3, 1, MOpt>& tv0,
const Eigen::Matrix<T, 3, 1, MOpt>& tv1,
const Eigen::Matrix<T, 3, 1, MOpt>& tv2,
Eigen::Matrix<T, 3, 1, MOpt>* result)
{
// Based on the outline of http://www.geometrictools.com/Distance.html, also refer to
// http://softsurfer.com/Archive/algorithm_0106 for a geometric interpretation
// The triangle is parametrized by:
// t: tv0 + s * (tv1-tv0) + t * (tv2-tv0) , with s and t between 0 and 1
// We are minimizing Q(s, t) = as*as + 2bst + ct*ct + 2ds + 2et + f,
Eigen::Matrix<T, 3, 1, MOpt> tv01 = tv1 - tv0;
Eigen::Matrix<T, 3, 1, MOpt> tv02 = tv2 - tv0;
T a = tv01.squaredNorm();
if (a <= Geometry::SquaredDistanceEpsilon)
{
// Degenerate edge 1
return distancePointSegment<T>(pt, tv0, tv2, result);
}
T b = tv01.dot(tv02);
T tCross = tv01.cross(tv02).squaredNorm();
if (tCross <= Geometry::SquaredDistanceEpsilon)
{
// Degenerate edge 2
return distancePointSegment<T>(pt, tv0, tv1, result);
}
T c = tv02.squaredNorm();
if (c <= Geometry::SquaredDistanceEpsilon)
{
// Degenerate edge 3
return distancePointSegment<T>(pt, tv0, tv1, result);
}
Eigen::Matrix<T, 3, 1, MOpt> tv0pv0 = tv0 - pt;
T d = tv01.dot(tv0pv0);
T e = tv02.dot(tv0pv0);
T ratio = a * c - b * b;
T s = b * e - c * d;
T t = b * d - a * e;
// Determine region (inside-outside triangle)
int region = -1;
if (s + t <= ratio)
{
if (s < 0)
{
if (t < 0)
{
region = 4;
}
else
{
region = 3;
}
}
else if (t < 0)
{
region = 5;
}
else
{
region = 0;
}
}
else
{
if (s < 0)
{
region = 2;
}
else if (t < 0)
{
region = 6;
}
else
{
region = 1;
}
}
// Regions: /
// ^ t=0 /
// \ 2| /
// \ | /
// \| /
// \ /
// |\ /
// | \ 1 /
// 3 | \ /
// | 0 \ /
// ----|----\-------> s=0 /
// | \ /
// 4 | 5 \ 6 /
// | \ /
// /
T numer, denom, tmp0, tmp1;
enum edge_type { s0, t0, s1t1, edge_skip, edge_invalid };
edge_type edge = edge_invalid;
switch (region)
{
case 0:
// Global minimum inside [0,1] [0,1]
numer = T(1) / ratio;
s *= numer;
t *= numer;
edge = edge_skip;
break;
case 1:
edge = s1t1;
break;
case 2:
// Grad(Q(0,1)).(0,-1)/2 = -c-e
// Grad(Q(0,1)).(1,-1)/2 = b=d-c-e
tmp0 = b + d;
tmp1 = c + e;
if (tmp1 > tmp0)
{
edge = s1t1;
}
else
{
edge = s0;
}
break;
case 3:
edge = s0;
break;
case 4:
// Grad(Q(0,0)).(0,1)/2 = e
// Grad(Q(0,0)).(1,0)/2 = d
if (e >= d)
{
edge = t0;
}
else
{
edge = s0;
}
break;
case 5:
edge = t0;
break;
case 6:
// Grad(Q(1,0)).(-1,0)/2 = -a-d
// Grad(Q(1,0)).(-1,1)/2 = -a-d+b+e
tmp0 = -a - d;
tmp1 = -a - d + b + e;
if (tmp1 > tmp0)
{
edge = t0;
}
else
{
edge = s1t1;
}
break;
default:
break;
}
switch (edge)
{
case s0:
// F(t) = Q(0, t), F'(t)=0 when -e/c = 0
s = 0;
if (e >= 0)
{
t = 0;
}
else
{
t = (-e >= c ? 1 : -e / c);
}
break;
case t0:
// F(s) = Q(s, 0), F'(s)=0 when -d/a = 0
t = 0;
if (d >= 0)
{
s = 0;
}
else
{
s = (-d >= a ? 1 : -d / a);
}
break;
case s1t1:
// F(s) = Q(s, 1-s), F'(s) = 0 when (c+e-b-d)/(a-2b+c) = 0 (denom = || tv01-tv02 ||^2 always > 0)
numer = c + e - b - d;
if (numer <= 0)
{
s = 0;
}
else
{
denom = a - 2 * b + c;
s = (numer >= denom ? 1 : numer / denom);
}
t = 1 - s;
break;
case edge_skip:
break;
default:
break;
}
*result = tv0 + s * tv01 + t * tv02;
return ((*result) - pt).norm();
}
/// Calculate the intersection of a line segment with a triangle
/// See http://geomalgorithms.com/a06-_intersect-2.html#intersect_RayTriangle for the algorithm
/// \pre The normal must be unit length
/// \pre The triangle vertices must be in counter clockwise order in respect to the normal
/// \tparam T Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt Eigen Matrix options, can usually be inferred.
/// \param sv0,sv1 Extremities of the segment.
/// \param tv0,tv1,tv2 The triangle vertices. CCW around the normal.
/// \param tn The triangle normal, should be normalized.
/// \param [out] result The point where the triangle and the line segment intersect, invalid if they don't intersect.
/// \return true if the segment intersects with the triangle, false if it does not
/// \note HS-2013-may-07 This is the only function that only checks for intersection rather than returning a distance
/// if necessary this should be rewritten to do the distance calculation, doing so would necessitate to check
/// against all the triangle edges in the non intersection cases.
template <class T, int MOpt> inline
bool doesCollideSegmentTriangle(
const Eigen::Matrix<T, 3, 1, MOpt>& sv0,
const Eigen::Matrix<T, 3, 1, MOpt>& sv1,
const Eigen::Matrix<T, 3, 1, MOpt>& tv0,
const Eigen::Matrix<T, 3, 1, MOpt>& tv1,
const Eigen::Matrix<T, 3, 1, MOpt>& tv2,
const Eigen::Matrix<T, 3, 1, MOpt>& tn,
Eigen::Matrix<T, 3, 1, MOpt>* result)
{
// Triangle edges vectors
Eigen::Matrix<T, 3, 1, MOpt> u = tv1 - tv0;
Eigen::Matrix<T, 3, 1, MOpt> v = tv2 - tv0;
// Ray direction vector
Eigen::Matrix<T, 3, 1, MOpt> dir = sv1 - sv0;
Eigen::Matrix<T, 3, 1, MOpt> w0 = sv0 - tv0;
T a = -tn.dot(w0);
T b = tn.dot(dir);
result->setConstant((std::numeric_limits<double>::quiet_NaN()));
// Ray is parallel to triangle plane
if (std::abs(b) <= Geometry::AngularEpsilon)
{
if (std::abs(a) <= Geometry::AngularEpsilon)
{
// Ray lies in triangle plane
Eigen::Matrix<T, 3, 1, MOpt> baryCoords;
for (int i = 0; i < 2; ++i)
{
barycentricCoordinates((i == 0 ? sv0 : sv1), tv0, tv1, tv2, tn, &baryCoords);
if (baryCoords[0] >= 0 && baryCoords[1] >= 0 && baryCoords[2] >= 0)
{
*result = (i == 0) ? sv0 : sv1;
return true;
}
}
// All segment endpoints outside of triangle
return false;
}
else
{
// Segment parallel to triangle but not in same plane
return false;
}
}
// Get intersect point of ray with triangle plane
T r = a / b;
// Ray goes away from triangle
if (r < -Geometry::DistanceEpsilon)
{
return false;
}
//Ray comes toward triangle but isn't long enough to reach it
if (r > 1 + Geometry::DistanceEpsilon)
{
return false;
}
// Intersect point of ray and plane
Eigen::Matrix<T, 3, 1, MOpt> presumedIntersection = sv0 + r * dir;
// Collision point inside T?
T uu = u.dot(u);
T uv = u.dot(v);
T vv = v.dot(v);
Eigen::Matrix<T, 3, 1, MOpt> w = presumedIntersection - tv0;
T wu = w.dot(u);
T wv = w.dot(v);
T D = uv * uv - uu * vv;
// Get and test parametric coords
T s = (uv * wv - vv * wu) / D;
// I is outside T
if (s < -Geometry::DistanceEpsilon || s > 1 + Geometry::DistanceEpsilon)
{
return false;
}
T t = (uv * wu - uu * wv) / D;
// I is outside T
if (t < -Geometry::DistanceEpsilon || (s + t) > 1 + Geometry::DistanceEpsilon)
{
return false;
}
// I is in T
*result = sv0 + r * dir;
return true;
}
/// Calculate the distance of a point to a plane
/// \pre n needs to the normalized
/// \tparam T Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt Eigen Matrix options, can usually be inferred.
/// \param pt The point to check.
/// \param n The normal of the plane n (normalized).
/// \param d Constant d for the plane equation as in n.x + d = 0.
/// \param [out] result Projection of point p into the plane.
/// \return The distance to the plane (negative if on the backside of the plane).
template <class T, int MOpt> inline
T distancePointPlane(
const Eigen::Matrix<T, 3, 1, MOpt>& pt,
const Eigen::Matrix<T, 3, 1, MOpt>& n,
T d,
Eigen::Matrix<T, 3, 1, MOpt>* result)
{
T dist = n.dot(pt) + d;
*result = pt - n * dist;
return dist;
}
/// Calculate the distance between a segment and a plane.
/// \pre n should be normalized
/// \tparam T Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt Eigen Matrix options, can usually be inferred.
/// \param sv0,sv1 Endpoints of the segments.
/// \param n Normal of the plane n (normalized).
/// \param d Constant d in n.x + d = 0.
/// \param [out] closestPointSegment Point closest to the plane, the midpoint of the segment (v0+v1)/2
/// is being used if the segment is parallel to the plane. If the segment actually
/// intersects the plane segmentIntersectionPoint will be equal to planeIntersectionPoint.
/// \param [out] planeIntersectionPoint the point on the plane where the line defined by the segment
/// intersects the plane.
/// \return the distance of closest point of the segment to the plane, 0 if the segment intersects the plane,
/// negative if the closest point is on the other side of the plane.
template <class T, int MOpt> inline
T distanceSegmentPlane(
const Eigen::Matrix<T, 3, 1, MOpt>& sv0,
const Eigen::Matrix<T, 3, 1, MOpt>& sv1,
const Eigen::Matrix<T, 3, 1, MOpt>& n,
T d,
Eigen::Matrix<T, 3, 1, MOpt>* closestPointSegment,
Eigen::Matrix<T, 3, 1, MOpt>* planeIntersectionPoint)
{
T dist0 = n.dot(sv0) + d;
T dist1 = n.dot(sv1) + d;
// Parallel case
Eigen::Matrix<T, 3, 1, MOpt> v01 = sv1 - sv0;
if (std::abs(n.dot(v01)) <= Geometry::AngularEpsilon)
{
*closestPointSegment = (sv0 + sv1) * T(0.5);
dist0 = n.dot(*closestPointSegment) + d;
*planeIntersectionPoint = *closestPointSegment - dist0 * n;
return (std::abs(dist0) < Geometry::DistanceEpsilon ? 0 : dist0);
}
// Both on the same side
if ((dist0 > 0 && dist1 > 0) || (dist0 < 0 && dist1 < 0))
{
if (std::abs(dist0) < std::abs(dist1))
{
*closestPointSegment = sv0;
*planeIntersectionPoint = sv0 - dist0 * n;
return dist0;
}
else
{
*closestPointSegment = sv1;
*planeIntersectionPoint = sv1 - dist1 * n;
return dist1;
}
}
// Segment cutting through
else
{
Eigen::Matrix<T, 3, 1, MOpt> v01 = sv1 - sv0;
T lambda = (-d - sv0.dot(n)) / v01.dot(n);
*planeIntersectionPoint = sv0 + lambda * v01;
*closestPointSegment = *planeIntersectionPoint;
return 0;
}
}
/// Calculate the distance of a triangle to a plane.
/// \pre n should be normalized.
/// \tparam T Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt Eigen Matrix options, can usually be inferred.
/// \param tv0,tv1,tv2 Points of the triangle.
/// \param n Normal of the plane n (normalized).
/// \param d Constant d in n.x + d = 0.
/// \param closestPointTriangle Closest point on the triangle, when the triangle is coplanar to
/// the plane (tv0+tv1+tv2)/3 is used, when the triangle intersects the plane the midpoint of
/// the intersection segment is returned.
/// \param planeProjectionPoint Projection of the closest point onto the plane, when the triangle intersects
/// the plane the midpoint of the intersection segment is returned.
/// \return The distance of the triangle to the plane.
template <class T, int MOpt> inline
T distanceTrianglePlane(
const Eigen::Matrix<T, 3, 1, MOpt>& tv0,
const Eigen::Matrix<T, 3, 1, MOpt>& tv1,
const Eigen::Matrix<T, 3, 1, MOpt>& tv2,
const Eigen::Matrix<T, 3, 1, MOpt>& n,
T d,
Eigen::Matrix<T, 3, 1, MOpt>* closestPointTriangle,
Eigen::Matrix<T, 3, 1, MOpt>* planeProjectionPoint)
{
Eigen::Matrix<T, 3, 1, MOpt> distances(n.dot(tv0) + d, n.dot(tv1) + d, n.dot(tv2) + d);
Eigen::Matrix<T, 3, 1, MOpt> t01 = tv1 - tv0;
Eigen::Matrix<T, 3, 1, MOpt> t02 = tv2 - tv0;
Eigen::Matrix<T, 3, 1, MOpt> t12 = tv2 - tv1;
closestPointTriangle->setConstant((std::numeric_limits<double>::quiet_NaN()));
planeProjectionPoint->setConstant((std::numeric_limits<double>::quiet_NaN()));
// HS-2013-may-09 Could there be a case where we fall into the wrong tree because of the checks against
// the various epsilon values all going against us ???
// Parallel case (including Coplanar)
if (std::abs(n.dot(t01)) <= Geometry::AngularEpsilon && std::abs(n.dot(t02)) <= Geometry::AngularEpsilon)
{
*closestPointTriangle = (tv0 + tv1 + tv2) / T(3);
*planeProjectionPoint = *closestPointTriangle - n * distances[0];
return distances[0];
}
// Is there an intersection
if ((distances.array() < -Geometry::DistanceEpsilon).any() &&
(distances.array() > Geometry::DistanceEpsilon).any())
{
if (distances[0] * distances[1] < 0)
{
*closestPointTriangle = tv0 + (-d - n.dot(tv0)) / n.dot(t01) * t01;
if (distances[0] * distances[2] < 0)
{
*planeProjectionPoint = tv0 + (-d - n.dot(tv0)) / n.dot(t02) * t02;
}
else
{
Eigen::Matrix<T, 3, 1, MOpt> t12 = tv2 - tv1;
*planeProjectionPoint = tv1 + (-d - n.dot(tv1)) / n.dot(t12) * t12;
}
}
else
{
*closestPointTriangle = tv0 + (-d - n.dot(tv0)) / n.dot(t02) * t02;
*planeProjectionPoint = tv1 + (-d - n.dot(tv1)) / n.dot(t12) * t12;
}
// Find the midpoint, take this out to return the segment endpoints
*closestPointTriangle = *planeProjectionPoint = (*closestPointTriangle + *planeProjectionPoint) * T(0.5);
return 0;
}
int index;
distances.cwiseAbs().minCoeff(&index);
switch (index)
{
case 0: //distances[0] is closest
*closestPointTriangle = tv0;
*planeProjectionPoint = tv0 - n * distances[0];
return distances[0];
case 1: //distances[1] is closest
*closestPointTriangle = tv1;
*planeProjectionPoint = tv1 - n * distances[1];
return distances[1];
case 2: //distances[2] is closest
*closestPointTriangle = tv2;
*planeProjectionPoint = tv2 - n * distances[2];
return distances[2];
}
return std::numeric_limits<T>::quiet_NaN();
}
/// Test if two planes are intersecting, if yes also calculate the intersection line.
/// \tparam T Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt Eigen Matrix options, can usually be inferred.
/// \param pn0,pd0 Normal and constant of the first plane, nx + d = 0.
/// \param pn1,pd1 Normal and constant of the second plane, nx + d = 0.
/// \param [out] pt0,pt1 Two points on the intersection line, not valid if there is no intersection.
/// \return true when a unique line exists, false for disjoint or coinciding.
template <class T, int MOpt> inline
bool doesIntersectPlanePlane(
const Eigen::Matrix<T, 3, 1, MOpt>& pn0, T pd0,
const Eigen::Matrix<T, 3, 1, MOpt>& pn1, T pd1,
Eigen::Matrix<T, 3, 1, MOpt>* pt0,
Eigen::Matrix<T, 3, 1, MOpt>* pt1)
{
// Algorithm from real time collision detection - optimized version page 210 (with extra checks)
const Eigen::Matrix<T, 3, 1, MOpt> lineDir = pn0.cross(pn1);
const T lineDirNorm2 = lineDir.squaredNorm();
pt0->setConstant((std::numeric_limits<double>::quiet_NaN()));
pt1->setConstant((std::numeric_limits<double>::quiet_NaN()));
// Test if the two planes are parallel
if (lineDirNorm2 <= Geometry::SquaredDistanceEpsilon)
{
return false; // planes disjoint
}
// Compute common point
*pt0 = (pd1 * pn0 - pd0 * pn1).cross(lineDir) / lineDirNorm2;
*pt1 = *pt0 + lineDir;
return true;
}
/// Calculate the distance of a line segment to a triangle.
/// Note that this version will calculate the normal of the triangle,
/// if the normal is known use the other version of this function.
/// \tparam T Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt Eigen Matrix options, can usually be inferred.
/// \param sv0,sv1 Extremities of the line segment.
/// \param tv0, tv1, tv2 Triangle points.
/// \param [out] segmentPoint Closest point on the segment.
/// \param [out] trianglePoint Closest point on the triangle.
/// \return the the distance between the two closest points, i.e. (trianglePoint - segmentPoint).norm().
template <class T, int MOpt> inline
T distanceSegmentTriangle(
const Eigen::Matrix<T, 3, 1, MOpt>& sv0,
const Eigen::Matrix<T, 3, 1, MOpt>& sv1,
const Eigen::Matrix<T, 3, 1, MOpt>& tv0,
const Eigen::Matrix<T, 3, 1, MOpt>& tv1,
const Eigen::Matrix<T, 3, 1, MOpt>& tv2,
Eigen::Matrix<T, 3, 1, MOpt>* segmentPoint,
Eigen::Matrix<T, 3, 1, MOpt>* trianglePoint)
{
Eigen::Matrix<T, 3, 1, MOpt> n = (tv1 - tv0).cross(tv2 - tv1);
n.normalize();
return distanceSegmentTriangle(sv0, sv1, tv0, tv1, tv2, n, segmentPoint, trianglePoint);
}
/// Calculate the distance of a line segment to a triangle.
/// \pre n needs to be normalized.
/// \tparam T Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt Eigen Matrix options, can usually be inferred.
/// \param sv0,sv1 Extremities of the line segment.
/// \param tv0, tv1, tv2 Points of the triangle.
/// \param normal Normal of the triangle (Expected to be normalized)
/// \param [out] segmentPoint Closest point on the segment.
/// \param [out] trianglePoint Closest point on the triangle.
/// \return the distance between the two closest points.
template <class T, int MOpt> inline
T distanceSegmentTriangle(
const Eigen::Matrix<T, 3, 1, MOpt>& sv0,
const Eigen::Matrix<T, 3, 1, MOpt>& sv1,
const Eigen::Matrix<T, 3, 1, MOpt>& tv0,
const Eigen::Matrix<T, 3, 1, MOpt>& tv1,
const Eigen::Matrix<T, 3, 1, MOpt>& tv2,
const Eigen::Matrix<T, 3, 1, MOpt>& normal,
Eigen::Matrix<T, 3, 1, MOpt>* segmentPoint,
Eigen::Matrix<T, 3, 1, MOpt>* trianglePoint)
{
segmentPoint->setConstant((std::numeric_limits<double>::quiet_NaN()));
trianglePoint->setConstant((std::numeric_limits<double>::quiet_NaN()));
// Setting up the plane that the triangle is in
const Eigen::Matrix<T, 3, 1, MOpt>& n = normal;
T d = -n.dot(tv0);
Eigen::Matrix<T, 3, 1, MOpt> baryCoords;
// Degenerate case: Line and triangle plane parallel
const Eigen::Matrix<T, 3, 1, MOpt> v01 = sv1 - sv0;
const T v01DotTn = n.dot(v01);
if (std::abs(v01DotTn) <= Geometry::AngularEpsilon)
{
// Check if any of the points project onto the tri
// otherwise normal (non-parallel) processing will get the right result
T dst = std::abs(distancePointPlane(sv0, n, d, trianglePoint));
Eigen::Matrix<T, 3, 1, MOpt> baryCoords;
barycentricCoordinates(*trianglePoint, tv0, tv1, tv2, normal, &baryCoords);
if (baryCoords[0] >= 0 && baryCoords[1] >= 0 && baryCoords[2] >= 0)
{
*segmentPoint = sv0;
return dst;
}
dst = std::abs(distancePointPlane(sv1, n, d, trianglePoint));
barycentricCoordinates(*trianglePoint, tv0, tv1, tv2, normal, &baryCoords);
if (baryCoords[0] >= 0 && baryCoords[1] >= 0 && baryCoords[2] >= 0)
{
*segmentPoint = sv1;
return dst;
}
}
// Line and triangle plane *not* parallel: check cut through case only, the rest will be check later
else
{
T lambda = -n.dot(sv0 - tv0) / v01DotTn;
if (lambda >= 0 && lambda <= 1)
{
*segmentPoint = *trianglePoint = sv0 + lambda * v01;
barycentricCoordinates(*trianglePoint, tv0, tv1, tv2, normal, &baryCoords);
if (baryCoords[0] >= 0 && baryCoords[1] >= 0 && baryCoords[2] >= 0)
{
// Segment goes through the triangle
return 0;
}
}
}
// At this point the segment is nearest point to one of the triangle edges or one of the end points
Eigen::Matrix<T, 3, 1, MOpt> segColPt01, segColPt02, segColPt12, triColPt01, triColPt02, triColPt12;
T dst01 = distanceSegmentSegment(sv0, sv1, tv0, tv1, &segColPt01, &triColPt01);
T dst02 = distanceSegmentSegment(sv0, sv1, tv0, tv2, &segColPt02, &triColPt02);
T dst12 = distanceSegmentSegment(sv0, sv1, tv1, tv2, &segColPt12, &triColPt12);
Eigen::Matrix<T, 3, 1, MOpt> ptTriCol0, ptTriCol1;
T dstPtTri0 = std::abs(distancePointPlane(sv0, n, d, &ptTriCol0));
barycentricCoordinates(ptTriCol0, tv0, tv1, tv2, normal, &baryCoords);
if (baryCoords[0] < 0 || baryCoords[1] < 0 || baryCoords[2] < 0)
{
dstPtTri0 = std::numeric_limits<T>::max();
}
T dstPtTri1 = std::abs(distancePointPlane(sv1, n, d, &ptTriCol1));
barycentricCoordinates(ptTriCol1, tv0, tv1, tv2, normal, &baryCoords);
if (baryCoords[0] < 0 || baryCoords[1] < 0 || baryCoords[2] < 0)
{
dstPtTri1 = std::numeric_limits<T>::max();
}
int minIndex;
Eigen::Matrix<double, 5, 1> distances;
(distances << dst01, dst02, dst12, dstPtTri0, dstPtTri1).finished().minCoeff(&minIndex);
switch (minIndex)
{
case 0:
*segmentPoint = segColPt01;
*trianglePoint = triColPt01;
return dst01;
case 1:
*segmentPoint = segColPt02;
*trianglePoint = triColPt02;
return dst02;
case 2:
*segmentPoint = segColPt12;
*trianglePoint = triColPt12;
return dst12;
case 3:
*segmentPoint = sv0;
*trianglePoint = ptTriCol0;
return dstPtTri0;
case 4:
*segmentPoint = sv1;
*trianglePoint = ptTriCol1;
return dstPtTri1;
}
// Invalid ...
return std::numeric_limits<T>::quiet_NaN();
}
/// Calculate the distance between two triangles
/// \tparam T Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt Eigen Matrix options, can usually be inferred.
/// \param t0v0,t0v1,t0v2 Points of the first triangle.
/// \param t1v0,t1v1,t1v2 Points of the second triangle.
/// \param [out] closestPoint0 Closest point on the first triangle, unless penetrating,
/// in which case it is the point along the edge that allows min separation.
/// \param [out] closestPoint1 Closest point on the second triangle, unless penetrating,
/// in which case it is the point along the edge that allows min separation.
/// \return the distance between the two triangles.
template <class T, int MOpt> inline
T distanceTriangleTriangle(
const Eigen::Matrix<T, 3, 1, MOpt>& t0v0,
const Eigen::Matrix<T, 3, 1, MOpt>& t0v1,
const Eigen::Matrix<T, 3, 1, MOpt>& t0v2,
const Eigen::Matrix<T, 3, 1, MOpt>& t1v0,
const Eigen::Matrix<T, 3, 1, MOpt>& t1v1,
const Eigen::Matrix<T, 3, 1, MOpt>& t1v2,
Eigen::Matrix<T, 3, 1, MOpt>* closestPoint0,
Eigen::Matrix<T, 3, 1, MOpt>* closestPoint1)
{
// Check the segments of t0 against t1
T minDst = std::numeric_limits<T>::max();
T currDst = 0;
Eigen::Matrix<T, 3, 1, MOpt> segPt, triPt;
Eigen::Matrix<T, 3, 1, MOpt> n0 = (t0v1 - t0v0).cross(t0v2 - t0v0);
n0.normalize();
Eigen::Matrix<T, 3, 1, MOpt> n1 = (t1v1 - t1v0).cross(t1v2 - t1v0);
n1.normalize();
currDst = distanceSegmentTriangle(t0v0, t0v1, t1v0, t1v1, t1v2, n1, &segPt, &triPt);
if (currDst < minDst)
{
minDst = currDst;
*closestPoint0 = segPt;
*closestPoint1 = triPt;
}
currDst = distanceSegmentTriangle(t0v1, t0v2, t1v0, t1v1, t1v2, n1, &segPt, &triPt);
if (currDst < minDst)
{
minDst = currDst;
*closestPoint0 = segPt;
*closestPoint1 = triPt;
}
currDst = distanceSegmentTriangle(t0v2, t0v0, t1v0, t1v1, t1v2, n1, &segPt, &triPt);
if (currDst < minDst)
{
minDst = currDst;
*closestPoint0 = segPt;
*closestPoint1 = triPt;
}
// Check the segments of t1 against t0
currDst = distanceSegmentTriangle(t1v0, t1v1, t0v0, t0v1, t0v2, n0, &segPt, &triPt);
if (currDst < minDst)
{
minDst = currDst;
*closestPoint1 = segPt;
*closestPoint0 = triPt;
}
currDst = distanceSegmentTriangle(t1v1, t1v2, t0v0, t0v1, t0v2, n0, &segPt, &triPt);
if (currDst < minDst)
{
minDst = currDst;
*closestPoint1 = segPt;
*closestPoint0 = triPt;
}
currDst = distanceSegmentTriangle(t1v2, t1v0, t0v0, t0v1, t0v2, n0, &segPt, &triPt);
if (currDst < minDst)
{
minDst = currDst;
*closestPoint1 = segPt;
*closestPoint0 = triPt;
}
return (minDst);
}
/// Calculate the intersections between a line segment and an axis aligned box
/// \tparam T Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt Eigen Matrix options, can usually be inferred.
/// \param sv0,sv1 Extremities of the line segment.
/// \param box Axis aligned bounding box
/// \param [out] intersections The points of intersection between the segment and the box
template <class T, int MOpt>
void intersectionsSegmentBox(
const Eigen::Matrix<T, 3, 1, MOpt>& sv0,
const Eigen::Matrix<T, 3, 1, MOpt>& sv1,
const Eigen::AlignedBox<T, 3>& box,
std::vector<Eigen::Matrix<T, 3, 1, MOpt>>* intersections)
{
Eigen::Array<T, 3, 1, MOpt> v01 = sv1 - sv0;
Eigen::Array<bool, 3, 1, MOpt> parallelToPlane = (v01.cwiseAbs().array() < Geometry::DistanceEpsilon);
if (parallelToPlane.any())
{
Eigen::Array<bool, 3, 1, MOpt> beyondMinCorner = (sv0.array() < box.min().array());
Eigen::Array<bool, 3, 1, MOpt> beyondMaxCorner = (sv0.array() > box.max().array());
if ((parallelToPlane && (beyondMinCorner || beyondMaxCorner)).any())
{
return;
}
}
// Calculate the intersection of the segment with each of the 6 box planes.
// The intersection is calculated as the distance along the segment (abscissa)
// scaled from 0 to 1.
Eigen::Array<T, 3, 2, MOpt> planeIntersectionAbscissas;
planeIntersectionAbscissas.col(0) = (box.min().array() - sv0.array());
planeIntersectionAbscissas.col(1) = (box.max().array() - sv0.array());
// While we could be dividing by zero here, INF values are
// correctly handled by the rest of the function.
planeIntersectionAbscissas.colwise() /= v01;
T entranceAbscissa = planeIntersectionAbscissas.rowwise().minCoeff().maxCoeff();
T exitAbscissa = planeIntersectionAbscissas.rowwise().maxCoeff().minCoeff();
if (entranceAbscissa < exitAbscissa && exitAbscissa > T(0.0))
{
if (entranceAbscissa >= T(0.0) && entranceAbscissa <= T(1.0))
{
intersections->push_back(sv0 + v01.matrix() * entranceAbscissa);
}
if (exitAbscissa >= T(0.0) && exitAbscissa <= T(1.0))
{
intersections->push_back(sv0 + v01.matrix() * exitAbscissa);
}
}
}
/// Test if an axis aligned box intersects with a capsule
/// \tparam T Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt Eigen Matrix options, can usually be inferred.
/// \param capsuleBottom Position of the capsule bottom
/// \param capsuleTop Position of the capsule top
/// \param capsuleRadius The capsule radius
/// \param box Axis aligned bounding box
/// \return True, if intersection is detected.
template <class T, int MOpt>
bool doesIntersectBoxCapsule(
const Eigen::Matrix<T, 3, 1, MOpt>& capsuleBottom,
const Eigen::Matrix<T, 3, 1, MOpt>& capsuleTop,
const T capsuleRadius,
const Eigen::AlignedBox<T, 3>& box)
{
Eigen::AlignedBox<double, 3> dilatedBox(box.min().array() - capsuleRadius, box.max().array() + capsuleRadius);
std::vector<Vector3d> candidates;
intersectionsSegmentBox(capsuleBottom, capsuleTop, dilatedBox, &candidates);
if (dilatedBox.contains(capsuleBottom))
{
candidates.push_back(capsuleBottom);
}
if (dilatedBox.contains(capsuleTop))
{
candidates.push_back(capsuleTop);
}
bool doesIntersect = false;
ptrdiff_t dimensionsOutsideBox;
Vector3d clampedPosition, segmentPoint;
for (auto candidate = candidates.cbegin(); candidate != candidates.cend(); ++candidate)
{
// Collisions between a capsule and a box are the same as a segment and a dilated
// box with rounded corners. If the intersection occurs outside the original box
// in two dimensions (collision with an edge of the dilated box) or three
// dimensions (collision with the corner of the dilated box) dimensions, we need
// to check if it is inside these rounded corners.
dimensionsOutsideBox = (candidate->array() > box.max().array()).count();
dimensionsOutsideBox += (candidate->array() < box.min().array()).count();
if (dimensionsOutsideBox >= 2)
{
clampedPosition = (*candidate).array().min(box.max().array()).max(box.min().array());
if (distancePointSegment(clampedPosition, capsuleBottom, capsuleTop, &segmentPoint) > capsuleRadius)
{
// Doesn't intersect, try the next candidate.
continue;
}
}
doesIntersect = true;
break;
}
return doesIntersect;
}
/// Helper method to determine the nearest point between a point and a line.
/// \tparam T the numeric data type used for the vector argument. Can usually be deduced.
/// \tparam VOpt the option flags (alignment etc.) used for the vector argument. Can be deduced.
/// \param point is the point under consideration.
/// \param segment0 one point on the line
/// \param segment1 second point on the line
/// \return the closest point on the line through the segment to the point under test
template <class T, int VOpt>
Eigen::Matrix<T, 3, 1, VOpt> nearestPointOnLine(const Eigen::Matrix<T, 3, 1, VOpt>& point,
const Eigen::Matrix<T, 3, 1, VOpt>& segment0, const Eigen::Matrix<T, 3, 1, VOpt>& segment1)
{
auto pointToSegmentStart = segment0 - point;
auto segmentDirection = segment1 - segment0;
auto squaredNorm = segmentDirection.squaredNorm();
SURGSIM_ASSERT(squaredNorm != 0.0) << "Line is defined by two collocated points.";
auto distance = -pointToSegmentStart.dot(segmentDirection) / squaredNorm;
auto p0Proj = segment0 + distance * segmentDirection;
return p0Proj;
}
/// Check if the two triangles intersect using separating axis test.
/// Algorithm is implemented from http://fileadmin.cs.lth.se/cs/Personal/Tomas_Akenine-Moller/pubs/tritri.pdf
///
/// \tparam T Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt Eigen Matrix options, can usually be inferred.
/// \param t0v0,t0v1,t0v2 Vertices of the first triangle.
/// \param t1v0,t1v1,t1v2 Vertices of the second triangle.
/// \param t0n Normal of the first triangle, should be normalized.
/// \param t1n Normal of the second triangle, should be normalized.
/// \return True, if intersection is detected.
template <class T, int MOpt> inline
bool doesIntersectTriangleTriangle(
const Eigen::Matrix<T, 3, 1, MOpt>& t0v0,
const Eigen::Matrix<T, 3, 1, MOpt>& t0v1,
const Eigen::Matrix<T, 3, 1, MOpt>& t0v2,
const Eigen::Matrix<T, 3, 1, MOpt>& t1v0,
const Eigen::Matrix<T, 3, 1, MOpt>& t1v1,
const Eigen::Matrix<T, 3, 1, MOpt>& t1v2,
const Eigen::Matrix<T, 3, 1, MOpt>& t0n,
const Eigen::Matrix<T, 3, 1, MOpt>& t1n);
/// Check if the two triangles intersect using separating axis test.
/// \tparam T Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt Eigen Matrix options, can usually be inferred.
/// \param t0v0,t0v1,t0v2 Vertices of the first triangle.
/// \param t1v0,t1v1,t1v2 Vertices of the second triangle.
/// \return True, if intersection is detected.
template <class T, int MOpt> inline
bool doesIntersectTriangleTriangle(
const Eigen::Matrix<T, 3, 1, MOpt>& t0v0,
const Eigen::Matrix<T, 3, 1, MOpt>& t0v1,
const Eigen::Matrix<T, 3, 1, MOpt>& t0v2,
const Eigen::Matrix<T, 3, 1, MOpt>& t1v0,
const Eigen::Matrix<T, 3, 1, MOpt>& t1v1,
const Eigen::Matrix<T, 3, 1, MOpt>& t1v2);
/// Calculate the contact between two triangles.
/// Algorithm presented in
/// https://docs.google.com/a/simquest.com/document/d/11ajMD7QoTVelT2_szGPpeUEY0wHKKxW1TOgMe8k5Fsc/pub.
/// If the triangle are known to intersect, the deepest penetration of the triangles into each other is calculated.
/// The triangle which penetrates less into the other triangle is chosen as contact.
/// \tparam T Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt Eigen Matrix options, can usually be inferred.
/// \param t0v0,t0v1,t0v2 Vertices of the first triangle.
/// \param t1v0,t1v1,t1v2 Vertices of the second triangle.
/// \param t0n Unit length normal of the first triangle, should be normalized.
/// \param t1n Unit length normal of the second triangle, should be normalized.
/// \param [out] penetrationDepth The depth of penetration.
/// \param [out] penetrationPoint0 The contact point on triangle0 (t0v0,t0v1,t0v2).
/// \param [out] penetrationPoint1 The contact point on triangle1 (t1v0,t1v1,t1v2).
/// \param [out] contactNormal The contact normal that points from triangle1 to triangle0.
/// \return True, if intersection is detected.
/// \note The [out] params are not modified if there is no intersection.
/// \note If penetrationPoint0 is moved by (contactNormal*penetrationDepth*0.5) and penetrationPoint1
/// is moved by -(contactNormal*penetrationDepth*0.5), the triangles will no longer be intersecting.
template <class T, int MOpt> inline
bool calculateContactTriangleTriangle(
const Eigen::Matrix<T, 3, 1, MOpt>& t0v0,
const Eigen::Matrix<T, 3, 1, MOpt>& t0v1,
const Eigen::Matrix<T, 3, 1, MOpt>& t0v2,
const Eigen::Matrix<T, 3, 1, MOpt>& t1v0,
const Eigen::Matrix<T, 3, 1, MOpt>& t1v1,
const Eigen::Matrix<T, 3, 1, MOpt>& t1v2,
const Eigen::Matrix<T, 3, 1, MOpt>& t0n,
const Eigen::Matrix<T, 3, 1, MOpt>& t1n,
T* penetrationDepth,
Eigen::Matrix<T, 3, 1, MOpt>* penetrationPoint0,
Eigen::Matrix<T, 3, 1, MOpt>* penetrationPoint1,
Eigen::Matrix<T, 3, 1, MOpt>* contactNormal);
/// Calculate the contact between two triangles.
/// Algorithm presented in
/// https://docs.google.com/a/simquest.com/document/d/11ajMD7QoTVelT2_szGPpeUEY0wHKKxW1TOgMe8k5Fsc/pub.
/// If the triangle are known to intersect, the deepest penetration of the triangles into each other is calculated.
/// The triangle which penetrates less into the other triangle is chosen as contact.
/// \tparam T Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt Eigen Matrix options, can usually be inferred.
/// \param t0v0,t0v1,t0v2 Vertices of the first triangle, should be normalized.
/// \param t1v0,t1v1,t1v2 Vertices of the second triangle, should be normalized.
/// \param [out] penetrationDepth The depth of penetration.
/// \param [out] penetrationPoint0 The contact point on triangle0 (t0v0,t0v1,t0v2).
/// \param [out] penetrationPoint1 The contact point on triangle1 (t1v0,t1v1,t1v2).
/// \param [out] contactNormal The contact normal that points from triangle1 to triangle0.
/// \return True, if intersection is detected.
/// \note The [out] params are not modified if there is no intersection.
/// \note If penetrationPoint0 is moved by (contactNormal*penetrationDepth*0.5) and penetrationPoint1
/// is moved by -(contactNormal*penetrationDepth*0.5), the triangles will no longer be intersecting.
template <class T, int MOpt> inline
bool calculateContactTriangleTriangle(
const Eigen::Matrix<T, 3, 1, MOpt>& t0v0,
const Eigen::Matrix<T, 3, 1, MOpt>& t0v1,
const Eigen::Matrix<T, 3, 1, MOpt>& t0v2,
const Eigen::Matrix<T, 3, 1, MOpt>& t1v0,
const Eigen::Matrix<T, 3, 1, MOpt>& t1v1,
const Eigen::Matrix<T, 3, 1, MOpt>& t1v2,
T* penetrationDepth,
Eigen::Matrix<T, 3, 1, MOpt>* penetrationPoint0,
Eigen::Matrix<T, 3, 1, MOpt>* penetrationPoint1,
Eigen::Matrix<T, 3, 1, MOpt>* contactNormal);
/// Calculate the contact between two triangles.
/// Algorithm is implemented from http://fileadmin.cs.lth.se/cs/Personal/Tomas_Akenine-Moller/pubs/tritri.pdf
///
/// \tparam T Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt Eigen Matrix options, can usually be inferred.
/// \param t0v0,t0v1,t0v2 Vertices of the first triangle.
/// \param t1v0,t1v1,t1v2 Vertices of the second triangle.
/// \param t0n Normal of the first triangle, should be normalized.
/// \param t1n Normal of the second triangle, should be normalized.
/// \param [out] penetrationDepth The depth of penetration.
/// \param [out] penetrationPoint0 The contact point on triangle0 (t0v0,t0v1,t0v2).
/// \param [out] penetrationPoint1 The contact point on triangle1 (t1v0,t1v1,t1v2).
/// \param [out] contactNormal The contact normal that points from triangle1 to triangle0.
/// \return True, if intersection is detected.
/// \note The [out] params are not modified if there is no intersection.
/// \note If penetrationPoint0 is moved by (contactNormal*penetrationDepth*0.5) and penetrationPoint1
/// is moved by -(contactNormal*penetrationDepth*0.5), the triangles will no longer be intersecting.
template <class T, int MOpt> inline
bool calculateContactTriangleTriangleSeparatingAxis(
const Eigen::Matrix<T, 3, 1, MOpt>& t0v0,
const Eigen::Matrix<T, 3, 1, MOpt>& t0v1,
const Eigen::Matrix<T, 3, 1, MOpt>& t0v2,
const Eigen::Matrix<T, 3, 1, MOpt>& t1v0,
const Eigen::Matrix<T, 3, 1, MOpt>& t1v1,
const Eigen::Matrix<T, 3, 1, MOpt>& t1v2,
const Eigen::Matrix<T, 3, 1, MOpt>& t0n,
const Eigen::Matrix<T, 3, 1, MOpt>& t1n,
T* penetrationDepth,
Eigen::Matrix<T, 3, 1, MOpt>* penetrationPoint0,
Eigen::Matrix<T, 3, 1, MOpt>* penetrationPoint1,
Eigen::Matrix<T, 3, 1, MOpt>* contactNormal);
/// Calculate the contact between two triangles.
/// \tparam T Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt Eigen Matrix options, can usually be inferred.
/// \param t0v0,t0v1,t0v2 Vertices of the first triangle.
/// \param t1v0,t1v1,t1v2 Vertices of the second triangle.
/// \param [out] penetrationDepth The depth of penetration.
/// \param [out] penetrationPoint0 The contact point on triangle0 (t0v0,t0v1,t0v2).
/// \param [out] penetrationPoint1 The contact point on triangle1 (t1v0,t1v1,t1v2).
/// \param [out] contactNormal The contact normal that points from triangle1 to triangle0.
/// \return True, if intersection is detected.
/// \note The [out] params are not modified if there is no intersection.
/// \note If penetrationPoint0 is moved by (contactNormal*penetrationDepth*0.5) and penetrationPoint1
/// is moved by -(contactNormal*penetrationDepth*0.5), the triangles will no longer be intersecting.
template <class T, int MOpt> inline
bool calculateContactTriangleTriangleSeparatingAxis(
const Eigen::Matrix<T, 3, 1, MOpt>& t0v0,
const Eigen::Matrix<T, 3, 1, MOpt>& t0v1,
const Eigen::Matrix<T, 3, 1, MOpt>& t0v2,
const Eigen::Matrix<T, 3, 1, MOpt>& t1v0,
const Eigen::Matrix<T, 3, 1, MOpt>& t1v1,
const Eigen::Matrix<T, 3, 1, MOpt>& t1v2,
T* penetrationDepth,
Eigen::Matrix<T, 3, 1, MOpt>* penetrationPoint0,
Eigen::Matrix<T, 3, 1, MOpt>* penetrationPoint1,
Eigen::Matrix<T, 3, 1, MOpt>* contactNormal);
/// Calculate the contact between a capsule and a triangle.
/// If the shapes intersect, the deepest penetration of the capsule along the triangle normal is calculated.
/// \tparam T Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt Eigen Matrix options, can usually be inferred.
/// \param tv0,tv1,tv2 Vertices of the triangle.
/// \param tn Normal of the triangle, should be normalized.
/// \param cv0,cv1 Ends of the capsule axis.
/// \param cr Capsule radius.
/// \param [out] penetrationDepth The depth of penetration.
/// \param [out] penetrationPointTriangle The contact point on triangle.
/// \param [out] penetrationPointCapsule The contact point on capsule.
/// \param [out] contactNormal The contact normal that points from capsule to triangle.
/// \param [out] penetrationPointCapsuleAxis The point on the capsule axis closest to the triangle.
/// \return True, if intersection is detected.
/// \note The [out] params are not modified if there is no intersection.
/// \note If penetrationPointTriangle is moved by (contactNormal*penetrationDepth*0.5) and penetrationPointCapsule
/// is moved by -(contactNormal*penetrationDepth*0.5), the shapes will no longer be intersecting.
template <class T, int MOpt> inline
bool calculateContactTriangleCapsule(
const Eigen::Matrix<T, 3, 1, MOpt>& tv0,
const Eigen::Matrix<T, 3, 1, MOpt>& tv1,
const Eigen::Matrix<T, 3, 1, MOpt>& tv2,
const Eigen::Matrix<T, 3, 1, MOpt>& tn,
const Eigen::Matrix<T, 3, 1, MOpt>& cv0,
const Eigen::Matrix<T, 3, 1, MOpt>& cv1,
double cr,
T* penetrationDepth,
Eigen::Matrix<T, 3, 1, MOpt>* penetrationPointTriangle,
Eigen::Matrix<T, 3, 1, MOpt>* penetrationPointCapsule,
Eigen::Matrix<T, 3, 1, MOpt>* contactNormal,
Eigen::Matrix<T, 3, 1, MOpt>* penetrationPointCapsuleAxis);
/// Calculate the contact between a capsule and a triangle.
/// If the shapes intersect, the deepest penetration of the capsule along the triangle normal is calculated.
/// \tparam T Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt Eigen Matrix options, can usually be inferred.
/// \param tv0,tv1,tv2 Vertices of the triangle.
/// \param cv0,cv1 Ends of the capsule axis.
/// \param cr Capsule radius.
/// \param [out] penetrationDepth The depth of penetration.
/// \param [out] penetrationPointTriangle The contact point on triangle.
/// \param [out] penetrationPointCapsule The contact point on capsule.
/// \param [out] contactNormal The contact normal that points from capsule to triangle.
/// \param [out] penetrationPointCapsuleAxis The point on the capsule axis closest to the triangle.
/// \return True, if intersection is detected.
/// \note The [out] params are not modified if there is no intersection.
/// \note If penetrationPointTriangle is moved by (contactNormal*penetrationDepth*0.5) and penetrationPointCapsule
/// is moved by -(contactNormal*penetrationDepth*0.5), the shapes will no longer be intersecting.
template <class T, int MOpt> inline
bool calculateContactTriangleCapsule(
const Eigen::Matrix<T, 3, 1, MOpt>& tv0,
const Eigen::Matrix<T, 3, 1, MOpt>& tv1,
const Eigen::Matrix<T, 3, 1, MOpt>& tv2,
const Eigen::Matrix<T, 3, 1, MOpt>& cv0,
const Eigen::Matrix<T, 3, 1, MOpt>& cv1,
double cr,
T* penetrationDepth,
Eigen::Matrix<T, 3, 1, MOpt>* penetrationPointTriangle,
Eigen::Matrix<T, 3, 1, MOpt>* penetrationPointCapsule,
Eigen::Matrix<T, 3, 1, MOpt>* contactNormal,
Eigen::Matrix<T, 3, 1, MOpt>* penetrationPointCapsuleAxis);
/// Test when 4 points are coplanar in the range [0..1] given their linear motion
/// \tparam T The scalar type
/// \tparam MOpt The matrix options
/// \param A, B, C, D the 4 point' motion (each has a pair from -> to)
/// \param[out] timesOfCoplanarity The normalized times (in [0..1]) at which the 4 points are coplanar
/// \return The number of times the 4 points are coplanar throughout their motion in [0..1]
template <class T, int MOpt>
int timesOfCoplanarityInRange01(
const std::pair<Eigen::Matrix<T, 3, 1, MOpt>, Eigen::Matrix<T, 3, 1, MOpt>>& A,
const std::pair<Eigen::Matrix<T, 3, 1, MOpt>, Eigen::Matrix<T, 3, 1, MOpt>>& B,
const std::pair<Eigen::Matrix<T, 3, 1, MOpt>, Eigen::Matrix<T, 3, 1, MOpt>>& C,
const std::pair<Eigen::Matrix<T, 3, 1, MOpt>, Eigen::Matrix<T, 3, 1, MOpt>>& D,
std::array<T, 3>* timesOfCoplanarity)
{
/// Let's define the following:
/// A(t) = A0 + t * VA with VA = A1 - A0
/// Similarily for B(t), C(t) and D(t)
/// Therefore we have AB(t) = B(t) - A(t) = B(0) + t * VB - A(0) - t * VA
/// = AB(0) + t * [VB - VA] = AB(0) + t * VAB
///
/// The 4 points ABCD are coplanar are time t if they verify:
/// [AB(t).cross(CD(t))].AC(t) = 0
/// We develop this equation to clearly formulate the resulting cubic equation:
///
/// [AB(0).cross(CD(0)) + t*AB(0).cross(VCD) + t*VAB.cross(CD(0)) + t^2*VAB.cross(VCD)] . [AC(0) + t * VAC] = 0
/// t^0 * [[AB(0).cross(CD(0))].AC(0)] +
/// t^1 * [[AB(0).cross(CD(0))].VAC + [AB(0).cross(VCD)].AC(0) + [VAB.cross(CD(0))].AC(0)] +
/// t^2 * [[AB(0).cross(VCD)].VAC + [VAB.cross(CD(0))].VAC + [VAB.cross(VCD)].AC(0)] +
/// t^3 * [[VAB.cross(VCD)].VAC] = 0
Eigen::Matrix<T, 3, 1, MOpt> AB0 = B.first - A.first;
Eigen::Matrix<T, 3, 1, MOpt> AC0 = C.first - A.first;
Eigen::Matrix<T, 3, 1, MOpt> CD0 = D.first - C.first;
Eigen::Matrix<T, 3, 1, MOpt> VA = (A.second - A.first);
Eigen::Matrix<T, 3, 1, MOpt> VC = (C.second - C.first);
Eigen::Matrix<T, 3, 1, MOpt> VAB = (B.second - B.first) - VA;
Eigen::Matrix<T, 3, 1, MOpt> VAC = VC - VA;
Eigen::Matrix<T, 3, 1, MOpt> VCD = (D.second - D.first) - VC;
T a0 = AB0.cross(CD0).dot(AC0);
T a1 = AB0.cross(CD0).dot(VAC) + (AB0.cross(VCD) + VAB.cross(CD0)).dot(AC0);
T a2 = (AB0.cross(VCD) + VAB.cross(CD0)).dot(VAC) + VAB.cross(VCD).dot(AC0);
T a3 = VAB.cross(VCD).dot(VAC);
return findRootsInRange01(Polynomial<T, 3>(a0, a1, a2, a3), timesOfCoplanarity);
}
}; // namespace Math
}; // namespace SurgSim
#include "SurgSim/Math/PointTriangleCcdContactCalculation-inl.h"
#include "SurgSim/Math/SegmentSegmentCcdContactCalculation-inl.h"
#include "SurgSim/Math/TriangleCapsuleContactCalculation-inl.h"
#include "SurgSim/Math/TriangleTriangleIntersection-inl.h"
#include "SurgSim/Math/TriangleTriangleContactCalculation-inl.h"
#endif
|