This file is indexed.

/usr/include/SurgSim/Math/Geometry.h is in libopensurgsim-dev 0.7.0-6ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
// This file is a part of the OpenSurgSim project.
// Copyright 2013-2015, SimQuest Solutions Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef SURGSIM_MATH_GEOMETRY_H
#define SURGSIM_MATH_GEOMETRY_H

#include <boost/container/static_vector.hpp>
#include <Eigen/Core>
#include <Eigen/Geometry>

#include "SurgSim/Framework/Log.h"
#include "SurgSim/Math/Polynomial.h"
#include "SurgSim/Math/Vector.h"

/// \file Geometry.h a collection of functions that calculation geometric properties of various basic geometric shapes.
/// 	  Point, LineSegment, Plane, Triangle. All functions are templated for the accuracy of the calculation
/// 	  (float/double). There are also three kinds of epsilon defined that are used on a case by case basis.
/// 	  In general all function here will return a floating point or boolean value and take a series of output
/// 	  parameters. When those outputs cannot be calculated their values will be set to NAN.
/// 	  This functions are meant as a basic layer that will be wrapped with calls from structures mainting more
/// 	  state information about the primitives they are handling.
/// 	  As a convention we are using a plane equation in the form nx + d = 0
/// \note HS-2013-may-07 Even though some of the names in this file do not agree with the coding standards in
/// 	  regard to the use of verbs for functions it was determined that other phrasing would not necessarily
/// 	  improve the readability or expressiveness of the function names.

namespace SurgSim
{
namespace Math
{

namespace Geometry
{

/// Used as epsilon for general distance calculations
static const double DistanceEpsilon = 1e-10;

/// Used as epsilon for general distance calculations with squared distances
static const double SquaredDistanceEpsilon = 1e-10;

/// Epsilon used in angular comparisons
static const double AngularEpsilon = 1e-10;

/// Used as epsilon for scalar comparisons
static const double ScalarEpsilon = 1e-10;

}

/// Calculate the barycentric coordinates of a point with respect to a line segment.
/// \tparam T Floating point type of the calculation, can usually be inferred.
/// \tparam MOpt Eigen Matrix options, can usually be inferred.
/// \param pt Vertex of the point.
/// \param sv0, sv1 Vertices of the line segment.
/// \param [out] coordinates Barycentric coordinates.
/// \return bool true on success, false if two or more if the line segment is considered degenerate
/// \note The point need not be on the line segment, in which case, the barycentric coordinate of the projection
/// is calculated.
template <class T, int MOpt> inline
bool barycentricCoordinates(const Eigen::Matrix<T, 3, 1, MOpt>& pt,
							const Eigen::Matrix<T, 3, 1, MOpt>& sv0,
							const Eigen::Matrix<T, 3, 1, MOpt>& sv1,
							Eigen::Matrix<T, 2, 1, MOpt>* coordinates)
{
	const Eigen::Matrix<T, 3, 1, MOpt> line = sv1 - sv0;
	const T length2 = line.squaredNorm();
	if (length2 < Geometry::SquaredDistanceEpsilon)
	{
		coordinates->setConstant((std::numeric_limits<double>::quiet_NaN()));
		return false;
	}
	(*coordinates)[1] = (pt - sv0).dot(line) / length2;
	(*coordinates)[0] = static_cast<T>(1) - (*coordinates)[1];
	return true;
}

/// Calculate the barycentric coordinates of a point with respect to a triangle.
/// \pre The normal must be unit length
/// \pre The triangle vertices must be in counter clockwise order in respect to the normal
/// \tparam T Floating point type of the calculation, can usually be inferred.
/// \tparam MOpt Eigen Matrix options, can usually be inferred.
/// \param pt Vertex of the point.
/// \param tv0, tv1, tv2 Vertices of the triangle in counter clockwise order in respect to the normal.
/// \param tn Normal of the triangle (yes must be of norm 1 and a,b,c CCW).
/// \param [out] coordinates Barycentric coordinates.
/// \return bool true on success, false if two or more if the triangle is considered degenerate
template <class T, int MOpt> inline
bool barycentricCoordinates(const Eigen::Matrix<T, 3, 1, MOpt>& pt,
							const Eigen::Matrix<T, 3, 1, MOpt>& tv0,
							const Eigen::Matrix<T, 3, 1, MOpt>& tv1,
							const Eigen::Matrix<T, 3, 1, MOpt>& tv2,
							const Eigen::Matrix<T, 3, 1, MOpt>& tn,
							Eigen::Matrix<T, 3, 1, MOpt>* coordinates)
{
	const T signedTriAreaX2 = ((tv1 - tv0).cross(tv2 - tv0)).dot(tn);
	if (signedTriAreaX2 < Geometry::SquaredDistanceEpsilon)
	{
		// SQ_ASSERT_WARNING(false, "Cannot compute barycentric coords (degenetrate triangle), assigning center");
		coordinates->setConstant((std::numeric_limits<double>::quiet_NaN()));
		return false;
	}
	(*coordinates)[0] = ((tv1 - pt).cross(tv2 - pt)).dot(tn) / signedTriAreaX2;
	(*coordinates)[1] = ((tv2 - pt).cross(tv0 - pt)).dot(tn) / signedTriAreaX2;
	(*coordinates)[2] = 1 - (*coordinates)[0] - (*coordinates)[1];
	return true;
}

/// Calculate the barycentric coordinates of a point with respect to a triangle.
/// Please note that each time you use this call the normal of the triangle will be
/// calculated, if you convert more than one coordinate against this triangle, precalculate
/// the normal and use the other version of this function
/// \tparam T Floating point type of the calculation, can usually be inferred.
/// \tparam MOpt Eigen Matrix options, can usually be inferred.
/// \param pt Vertex of the point.
/// \param tv0, tv1, tv2 Vertices of the triangle.
/// \param [out] coordinates The Barycentric coordinates.
/// \return bool true on success, false if the triangle is considered degenerate
template <class T, int MOpt> inline
bool barycentricCoordinates(
	const Eigen::Matrix<T, 3, 1, MOpt>& pt,
	const Eigen::Matrix<T, 3, 1, MOpt>& tv0,
	const Eigen::Matrix<T, 3, 1, MOpt>& tv1,
	const Eigen::Matrix<T, 3, 1, MOpt>& tv2,
	Eigen::Matrix<T, 3, 1, MOpt>* coordinates)
{
	Eigen::Matrix<T, 3, 1, MOpt> tn = (tv1 - tv0).cross(tv2 - tv0);
	double norm = tn.norm();
	if (norm < Geometry::DistanceEpsilon)
	{
		coordinates->setConstant((std::numeric_limits<double>::quiet_NaN()));
		return false;
	}
	tn /= norm;
	return barycentricCoordinates(pt, tv0, tv1, tv2, tn, coordinates);
}

/// Check if a point is inside a triangle
/// \note Use barycentricCoordinates() if you need the coordinates
/// \pre The normal must be unit length
/// \pre The triangle vertices must be in counter clockwise order in respect to the normal
/// \tparam T			Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt		Eigen Matrix options, can usually be inferred.
/// \param pt			Vertex of the point.
/// \param tv0, tv1, tv2 Vertices of the triangle, must be in CCW.
/// \param tn			Normal of the triangle (yes must be of norm 1 and a,b,c CCW).
/// \return	true		if pt lies inside the triangle tv0, tv1, tv2, false otherwise.
template <class T, int MOpt> inline
bool isPointInsideTriangle(
	const Eigen::Matrix<T, 3, 1, MOpt>& pt,
	const Eigen::Matrix<T, 3, 1, MOpt>& tv0,
	const Eigen::Matrix<T, 3, 1, MOpt>& tv1,
	const Eigen::Matrix<T, 3, 1, MOpt>& tv2,
	const Eigen::Matrix<T, 3, 1, MOpt>& tn)
{
	Eigen::Matrix<T, 3, 1, MOpt> baryCoords;
	bool result = barycentricCoordinates(pt, tv0, tv1, tv2, tn, &baryCoords);
	return (result &&
			baryCoords[0] >= -Geometry::ScalarEpsilon &&
			baryCoords[1] >= -Geometry::ScalarEpsilon &&
			baryCoords[2] >= -Geometry::ScalarEpsilon);
}

/// Check if a point is inside a triangle.
/// \note Use barycentricCoordinates() if you need the coordinates.
/// Please note that the normal will be calculated each time you use this call, if you are doing more than one
/// test with the same triangle, precalculate the normal and pass it. Into the other version of this function
/// \tparam T			Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt		Eigen Matrix options, can usually be inferred.
/// \param pt			Vertex of the point.
/// \param tv0, tv1, tv2 Vertices of the triangle, must be in CCW.
/// \return true if pt lies inside the triangle tv0, tv1, tv2, false otherwise.
template <class T, int MOpt> inline
bool isPointInsideTriangle(
	const Eigen::Matrix<T, 3, 1, MOpt>& pt,
	const Eigen::Matrix<T, 3, 1, MOpt>& tv0,
	const Eigen::Matrix<T, 3, 1, MOpt>& tv1,
	const Eigen::Matrix<T, 3, 1, MOpt>& tv2)
{
	Eigen::Matrix<T, 3, 1, MOpt> baryCoords;
	bool result = barycentricCoordinates(pt, tv0, tv1, tv2, &baryCoords);
	return (result && baryCoords[0] >= -Geometry::ScalarEpsilon &&
			baryCoords[1] >= -Geometry::ScalarEpsilon &&
			baryCoords[2] >= -Geometry::ScalarEpsilon);
}

/// Check if a point is on the edge of a triangle.
/// \note Use barycentricCoordinates() if you need the coordinates.
/// \tparam T			Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt		Eigen Matrix options, can usually be inferred.
/// \param pt			Vertex of the point.
/// \param tv0, tv1, tv2 Vertices of the triangle, must be in CCW.
/// \param tn			Normal of the triangle (must be of norm 1 and a,b,c CCW).
/// \return true if pt lies on the edge of the triangle tv0, tv1, tv2, false otherwise.
template <class T, int MOpt> inline
bool isPointOnTriangleEdge(
	const Eigen::Matrix<T, 3, 1, MOpt>& pt,
	const Eigen::Matrix<T, 3, 1, MOpt>& tv0,
	const Eigen::Matrix<T, 3, 1, MOpt>& tv1,
	const Eigen::Matrix<T, 3, 1, MOpt>& tv2,
	const Eigen::Matrix<T, 3, 1, MOpt>& tn)
{
	Eigen::Matrix<T, 3, 1, MOpt> baryCoords;
	bool result = barycentricCoordinates(pt, tv0, tv1, tv2, tn, &baryCoords);
	return (result && baryCoords[0] >= -Geometry::ScalarEpsilon &&
		baryCoords[1] >= -Geometry::ScalarEpsilon &&
		baryCoords[2] >= -Geometry::ScalarEpsilon &&
		baryCoords.minCoeff() <= Geometry::ScalarEpsilon);
}

/// Check if a point is on the edge of a triangle.
/// \note Use barycentricCoordinates() if you need the coordinates.
/// Please note that the normal will be calculated each time you use this call, if you are doing more than one
/// test with the same triangle, precalculate the normal and pass it. Into the other version of this function
/// \tparam T			Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt		Eigen Matrix options, can usually be inferred.
/// \param pt			Vertex of the point.
/// \param tv0, tv1, tv2 Vertices of the triangle, must be in CCW.
/// \return true if pt lies on the edge of the triangle tv0, tv1, tv2, false otherwise.
template <class T, int MOpt> inline
bool isPointOnTriangleEdge(
	const Eigen::Matrix<T, 3, 1, MOpt>& pt,
	const Eigen::Matrix<T, 3, 1, MOpt>& tv0,
	const Eigen::Matrix<T, 3, 1, MOpt>& tv1,
	const Eigen::Matrix<T, 3, 1, MOpt>& tv2)
{
	Eigen::Matrix<T, 3, 1, MOpt> baryCoords;
	bool result = barycentricCoordinates(pt, tv0, tv1, tv2, &baryCoords);
	return (result && baryCoords[0] >= -Geometry::ScalarEpsilon &&
		baryCoords[1] >= -Geometry::ScalarEpsilon &&
		baryCoords[2] >= -Geometry::ScalarEpsilon &&
		baryCoords.minCoeff() <= Geometry::ScalarEpsilon);
}

/// Check whether the points are coplanar.
/// \tparam T			Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt		Eigen Matrix options, can usually be inferred.
/// \param a, b, c, d	Points to check for coplanarity.
/// \return true if the points are coplanar.
template <class T, int MOpt> inline
bool isCoplanar(
	const Eigen::Matrix<T, 3, 1, MOpt>& a,
	const Eigen::Matrix<T, 3, 1, MOpt>& b,
	const Eigen::Matrix<T, 3, 1, MOpt>& c,
	const Eigen::Matrix<T, 3, 1, MOpt>& d)
{
	return std::abs((c - a).dot((b - a).cross(d - c))) < Geometry::ScalarEpsilon;
}

/// Calculate the normal distance between a point and a line.
/// \param pt		The input point.
/// \param v0,v1	Two vertices on the line.
/// \param [out] result The point projected onto the line.
/// \return			The normal distance between the point and the line
template <class T, int MOpt> inline
T distancePointLine(
	const Eigen::Matrix<T, 3, 1, MOpt>& pt,
	const Eigen::Matrix<T, 3, 1, MOpt>& v0,
	const Eigen::Matrix<T, 3, 1, MOpt>& v1,
	Eigen::Matrix<T, 3, 1, MOpt>* result)
{
	// The lines is parametrized by:
	//		q = v0 + lambda0 * (v1-v0)
	// and we solve for pq.v01 = 0;
	Eigen::Matrix<T, 3, 1, MOpt> v01 = v1 - v0;
	T v01_norm2 = v01.squaredNorm();
	if (v01_norm2 <= Geometry::SquaredDistanceEpsilon)
	{
		*result = v0; // closest point is either
		T pv_norm2 = (pt - v0).squaredNorm();
		return sqrt(pv_norm2);
	}
	T lambda = (v01).dot(pt - v0);
	*result = v0 + lambda * v01 / v01_norm2;
	return (*result - pt).norm();
}

/// Point segment distance, if the projection of the closest point is not within the segments, the
/// closest segment point is used for the distance calculation.
/// \tparam T			Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt		Eigen Matrix options, can usually be inferred.
/// \param	pt		  	The input point
/// \param	sv0,sv1	  	The segment extremities.
/// \param [out] result	Either the projection onto the segment or one of the 2 vertices.
/// \return				The distance of the point from the segment.
template <class T, int MOpt> inline
T distancePointSegment(
	const Eigen::Matrix<T, 3, 1, MOpt>& pt,
	const Eigen::Matrix<T, 3, 1, MOpt>& sv0,
	const Eigen::Matrix<T, 3, 1, MOpt>& sv1,
	Eigen::Matrix<T, 3, 1, MOpt>* result)
{
	Eigen::Matrix<T, 3, 1, MOpt> v01 = sv1 - sv0;
	T v01Norm2 = v01.squaredNorm();
	if (v01Norm2 <= Geometry::SquaredDistanceEpsilon)
	{
		*result = sv0; // closest point is either
		return (pt - sv0).norm();
	}
	T lambda = v01.dot(pt - sv0);
	if (lambda <= 0)
	{
		*result = sv0;
	}
	else if (lambda >= v01Norm2)
	{
		*result = sv1;
	}
	else
	{
		*result = sv0 + lambda * v01 / v01Norm2;
	}
	return (*result - pt).norm();
}

/// Determine the distance between two lines
/// \tparam T			Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt		Eigen Matrix options, can usually be inferred.
/// \param l0v0, l0v1	Points on Line 0.
/// \param l1v0, l1v1	Points on Line 1.
/// \param [out] pt0	The closest point on line 0.
/// \param [out] pt1	The closest point on line 1.
/// \return				The normal distance between the two given lines i.e. (pt0 - pt1).norm()
/// \note We are using distancePointSegment for the degenerate cases as opposed to
/// 	  distancePointLine, why is that ??? (HS-2013-apr-26)
template <class T, int MOpt> inline
T distanceLineLine(
	const Eigen::Matrix<T, 3, 1, MOpt>& l0v0,
	const Eigen::Matrix<T, 3, 1, MOpt>& l0v1,
	const Eigen::Matrix<T, 3, 1, MOpt>& l1v0,
	const Eigen::Matrix<T, 3, 1, MOpt>& l1v1,
	Eigen::Matrix<T, 3, 1, MOpt>* pt0,
	Eigen::Matrix<T, 3, 1, MOpt>* pt1)
{
	// Based on the outline of http://www.geometrictools.com/Distance.html, also refer to
	// http://geomalgorithms.com/a07-_distance.html for a geometric interpretation
	// The lines are parametrized by:
	//		p0 = l0v0 + lambda0 * (l0v1-l0v0)
	//		p1 = l1v0 + lambda1 * (l1v1-l1v0)
	// and we solve for p0p1 perpendicular to both lines
	T lambda0, lambda1;
	Eigen::Matrix<T, 3, 1, MOpt> l0v01 = l0v1 - l0v0;
	T a = l0v01.squaredNorm();
	if (a <= Geometry::SquaredDistanceEpsilon)
	{
		// Degenerate line 0
		*pt0 = l0v0;
		return distancePointSegment(l0v0, l1v0, l1v1, pt1);
	}
	Eigen::Matrix<T, 3, 1, MOpt> l1v01 = l1v1 - l1v0;
	T b = -l0v01.dot(l1v01);
	T c = l1v01.squaredNorm();
	if (c <= Geometry::SquaredDistanceEpsilon)
	{
		// Degenerate line 1
		*pt1 = l1v0;
		return distancePointSegment(l1v0, l0v0, l0v1, pt0);
	}
	Eigen::Matrix<T, 3, 1, MOpt> l0v0_l1v0 = l0v0 - l1v0;
	T d = l0v01.dot(l0v0_l1v0);
	T e = -l1v01.dot(l0v0_l1v0);
	T ratio = a * c - b * b;
	if (std::abs(ratio) <= Geometry::ScalarEpsilon)
	{
		// parallel case
		lambda0 = 0;
		lambda1 = e / c;
	}
	else
	{
		// non-parallel case
		T inv_ratio = T(1) / ratio;
		lambda0 = (b * e - c * d) * inv_ratio;
		lambda1 = (b * d - a * e) * inv_ratio;
	}
	*pt0 = l0v0 + lambda0 * l0v01;
	*pt1 = l1v0 + lambda1 * l1v01;
	return ((*pt0) - (*pt1)).norm();
}


/// Distance between two segments, if the project of the closest point is not on the opposing segment,
/// the segment endpoints will be used for the distance calculation
/// \tparam T			Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt		Eigen Matrix options, can usually be inferred.
/// \param s0v0, s0v1	Segment 0 Extremities.
/// \param s1v0, s1v1	Segment 1 Extremities.
/// \param [out] pt0	Closest point on segment 0
/// \param [out] pt1	Closest point on segment 1
/// \param [out] s0t	Abscissa at the point of intersection on Segment 0 (s0v0 + t * (s0v1 - s0v0)).
/// \param [out] s1t	Abscissa at the point of intersection on Segment 0 (s1v0 + t * (s1v1 - s1v0)).
/// \return Distance between the segments, i.e. (pt0 - pt1).norm()
template <class T, int MOpt>
T distanceSegmentSegment(
	const Eigen::Matrix<T, 3, 1, MOpt>& s0v0,
	const Eigen::Matrix<T, 3, 1, MOpt>& s0v1,
	const Eigen::Matrix<T, 3, 1, MOpt>& s1v0,
	const Eigen::Matrix<T, 3, 1, MOpt>& s1v1,
	Eigen::Matrix<T, 3, 1, MOpt>* pt0,
	Eigen::Matrix<T, 3, 1, MOpt>* pt1,
	T* s0t = nullptr,
	T* s1t = nullptr)
{
	// Based on the outline of http://www.geometrictools.com/Documentation/DistanceLine3Line3.pdf, also refer to
	// http://geomalgorithms.com/a07-_distance.html for a geometric interpretation
	// The segments are parametrized by:
	//		p0 = l0v0 + s * (l0v1-l0v0), with s between 0 and 1
	//		p1 = l1v0 + t * (l1v1-l1v0), with t between 0 and 1
	// We are minimizing Q(s, t) = as*as + 2bst + ct*ct + 2ds + 2et + f,
	Eigen::Matrix<T, 3, 1, MOpt> s0v01 = s0v1 - s0v0;
	T a = s0v01.squaredNorm();
	if (a <= Geometry::SquaredDistanceEpsilon)
	{
		// Degenerate segment 0
		*pt0 = s0v0;
		return distancePointSegment<T>(s0v0, s1v0, s1v1, pt1);
	}
	Eigen::Matrix<T, 3, 1, MOpt> s1v01 = s1v1 - s1v0;
	T b = -s0v01.dot(s1v01);
	T c = s1v01.squaredNorm();
	if (c <= Geometry::SquaredDistanceEpsilon)
	{
		// Degenerate segment 1
		*pt1 = s1v1;
		return distancePointSegment<T>(s1v0, s0v0, s0v1, pt0);
	}
	Eigen::Matrix<T, 3, 1, MOpt> tempLine = s0v0 - s1v0;
	T d = s0v01.dot(tempLine);
	T e = -s1v01.dot(tempLine);
	T ratio = a * c - b * b;
	T s, t; // parametrization variables (do not initialize)
	int region = -1;
	T tmp;
	// Non-parallel case
	if (1.0 - std::abs(s0v01.normalized().dot(s1v01.normalized())) >= Geometry::SquaredDistanceEpsilon)
	{
		// Get the region of the global minimum in the s-t space based on the line-line solution
		//		s=0		s=1
		//		^
		//		|		|
		//	4	|	3	|	2
		//	----|-------|-------	t=1
		//		|		|
		//	5	|	0	|	1
		//		|		|
		//	----|-------|------->	t=0
		//		|		|
		//	6	|	7	|	8
		//		|		|
		//
		s = b * e - c * d;
		t = b * d - a * e;
		if (s >= 0)
		{
			if (s <= ratio)
			{
				if (t >= 0)
				{
					if (t <= ratio)
					{
						region = 0;
					}
					else
					{
						region = 3;
					}
				}
				else
				{
					region = 7;
				}
			}
			else
			{
				if (t >= 0)
				{
					if (t <= ratio)
					{
						region = 1;
					}
					else
					{
						region = 2;
					}
				}
				else
				{
					region = 8;
				}
			}
		}
		else
		{
			if (t >= 0)
			{
				if (t <= ratio)
				{
					region = 5;
				}
				else
				{
					region = 4;
				}
			}
			else
			{
				region = 6;
			}
		}
		enum edge_type { s0, s1, t0, t1, edge_skip, edge_invalid };
		edge_type edge = edge_invalid;
		switch (region)
		{
			case 0:
				// Global minimum inside [0,1] [0,1]
				s /= ratio;
				t /= ratio;
				edge = edge_skip;
				break;
			case 1:
				edge = s1;
				break;
			case 2:
				// Q_s(1,1)/2 = a+b+d
				if (a + b + d > 0)
				{
					edge = t1;
				}
				else
				{
					edge = s1;
				}
				break;
			case 3:
				edge = t1;
				break;
			case 4:
				// Q_s(0,1)/2 = b+d
				if (b + d > 0)
				{
					edge = s0;
				}
				else
				{
					edge = t1;
				}
				break;
			case 5:
				edge = s0;
				break;
			case 6:
				// Q_s(0,0)/2 = d
				if (d > 0)
				{
					edge = s0;
				}
				else
				{
					edge = t0;
				}
				break;
			case 7:
				edge = t0;
				break;
			case 8:
				// Q_s(1,0)/2 = a+d
				if (a + d > 0)
				{
					edge = t0;
				}
				else
				{
					edge = s1;
				}
				break;
			default:
				break;
		}
		switch (edge)
		{
			case s0:
				// F(t) = Q(0,t), F?(t) = 2*(e+c*t)
				// F?(T) = 0 when T = -e/c, then clamp between 0 and 1 (c always >= 0)
				s = 0;
				tmp = e;
				if (tmp > 0)
				{
					t = 0;
				}
				else if (-tmp > c)
				{
					t = 1;
				}
				else
				{
					t = -tmp / c;
				}
				break;
			case s1:
				// F(t) = Q(1,t), F?(t) = 2*((b+e)+c*t)
				// F?(T) = 0 when T = -(b+e)/c, then clamp between 0 and 1 (c always >= 0)
				s = 1;
				tmp = b + e;
				if (tmp > 0)
				{
					t = 0;
				}
				else if (-tmp > c)
				{
					t = 1;
				}
				else
				{
					t = -tmp / c;
				}
				break;
			case t0:
				// F(s) = Q(s,0), F?(s) = 2*(d+a*s) =>
				// F?(S) = 0 when S = -d/a, then clamp between 0 and 1 (a always >= 0)
				t = 0;
				tmp = d;
				if (tmp > 0)
				{
					s = 0;
				}
				else if (-tmp > a)
				{
					s = 1;
				}
				else
				{
					s = -tmp / a;
				}
				break;
			case t1:
				// F(s) = Q(s,1), F?(s) = 2*(b+d+a*s) =>
				// F?(S) = 0 when S = -(b+d)/a, then clamp between 0 and 1  (a always >= 0)
				t = 1;
				tmp = b + d;
				if (tmp > 0)
				{
					s = 0;
				}
				else if (-tmp > a)
				{
					s = 1;
				}
				else
				{
					s = -tmp / a;
				}
				break;
			case edge_skip:
				break;
			default:
				break;
		}
	}
	else
		// Parallel case
	{
		if (b > 0)
		{
			// Segments have different directions
			if (d >= 0)
			{
				// 0-0 end points since s-segment 0 less than t-segment 0
				s = 0;
				t = 0;
			}
			else if (-d <= a)
			{
				// s-segment 0 end-point in the middle of the t 0-1 segment, get distance
				s = -d / a;
				t = 0;
			}
			else
			{
				// s-segment 1 is definitely closer
				s = 1;
				tmp = a + d;
				if (-tmp >= b)
				{
					t = 1;
				}
				else
				{
					t = -tmp / b;
				}
			}
		}
		else
		{
			// Both segments have the same dir
			if (-d >= a)
			{
				// 1-0
				s = 1;
				t = 0;
			}
			else if (d <= 0)
			{
				// mid-0
				s = -d / a;
				t = 0;
			}
			else
			{
				s = 0;
				// 1-mid
				if (d >= -b)
				{
					t = 1;
				}
				else
				{
					t = -d / b;
				}
			}
		}
	}
	*pt0 = s0v0 + s * (s0v01);
	*pt1 = s1v0 + t * (s1v01);
	if (s0t != nullptr && s1t != nullptr)
	{
		*s0t = s;
		*s1t = t;
	}
	return ((*pt1) - (*pt0)).norm();
}

/// Calculate the normal distance of a point from a triangle, the resulting point will be on the edge of the triangle
/// if the projection of the point is not inside the triangle.
/// \tparam T			Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt		Eigen Matrix options, can usually be inferred.
/// \param pt			The point that is being measured.
/// \param tv0, tv1, tv2 The vertices of the triangle.
/// \param [out] result	The point on the triangle that is closest to pt, if the projection of pt onto the triangle.
/// 					plane is not inside the triangle the closest point on the edge will be used.
/// \return				The distance between the point and the triangle, i.e (result - pt).norm()
template <class T, int MOpt> inline
T distancePointTriangle(
	const Eigen::Matrix<T, 3, 1, MOpt>& pt,
	const Eigen::Matrix<T, 3, 1, MOpt>& tv0,
	const Eigen::Matrix<T, 3, 1, MOpt>& tv1,
	const Eigen::Matrix<T, 3, 1, MOpt>& tv2,
	Eigen::Matrix<T, 3, 1, MOpt>* result)
{
	// Based on the outline of http://www.geometrictools.com/Distance.html, also refer to
	//	http://softsurfer.com/Archive/algorithm_0106 for a geometric interpretation
	// The triangle is parametrized by:
	//		t: tv0 + s * (tv1-tv0) + t * (tv2-tv0) , with s and t between 0 and 1
	// We are minimizing Q(s, t) = as*as + 2bst + ct*ct + 2ds + 2et + f,
	Eigen::Matrix<T, 3, 1, MOpt> tv01 = tv1 - tv0;
	Eigen::Matrix<T, 3, 1, MOpt> tv02 = tv2 - tv0;
	T a = tv01.squaredNorm();
	if (a <= Geometry::SquaredDistanceEpsilon)
	{
		// Degenerate edge 1
		return distancePointSegment<T>(pt, tv0, tv2, result);
	}
	T b = tv01.dot(tv02);
	T tCross = tv01.cross(tv02).squaredNorm();
	if (tCross <= Geometry::SquaredDistanceEpsilon)
	{
		// Degenerate edge 2
		return distancePointSegment<T>(pt, tv0, tv1, result);
	}
	T c = tv02.squaredNorm();
	if (c <= Geometry::SquaredDistanceEpsilon)
	{
		// Degenerate edge 3
		return distancePointSegment<T>(pt, tv0, tv1, result);
	}
	Eigen::Matrix<T, 3, 1, MOpt> tv0pv0 = tv0 - pt;
	T d = tv01.dot(tv0pv0);
	T e = tv02.dot(tv0pv0);
	T ratio = a * c - b * b;
	T s = b * e - c * d;
	T t = b * d - a * e;
	// Determine region (inside-outside triangle)
	int region = -1;
	if (s + t <= ratio)
	{
		if (s < 0)
		{
			if (t < 0)
			{
				region = 4;
			}
			else
			{
				region = 3;
			}
		}
		else if (t < 0)
		{
			region = 5;
		}
		else
		{
			region = 0;
		}
	}
	else
	{
		if (s < 0)
		{
			region = 2;
		}
		else if (t < 0)
		{
			region = 6;
		}
		else
		{
			region = 1;
		}
	}
	//	Regions:                    /
	//	    ^ t=0                   /
	//	 \ 2|                       /
	//	  \ |                       /
	//	   \|                       /
	//		\                       /
	//		|\                      /
	//		| \	  1                 /
	//	3	|  \                    /
	//		| 0 \                   /
	//	----|----\------->	s=0     /
	//		| 	  \                 /
	//	4	|	5  \   6            /
	//		|	    \               /
	//                              /
	T numer, denom, tmp0, tmp1;
	enum edge_type { s0, t0, s1t1, edge_skip, edge_invalid };
	edge_type edge = edge_invalid;
	switch (region)
	{
		case 0:
			// Global minimum inside [0,1] [0,1]
			numer = T(1) / ratio;
			s *= numer;
			t *= numer;
			edge = edge_skip;
			break;
		case 1:
			edge = s1t1;
			break;
		case 2:
			// Grad(Q(0,1)).(0,-1)/2 = -c-e
			// Grad(Q(0,1)).(1,-1)/2 = b=d-c-e
			tmp0 = b + d;
			tmp1 = c + e;
			if (tmp1 > tmp0)
			{
				edge = s1t1;
			}
			else
			{
				edge = s0;
			}
			break;
		case 3:
			edge = s0;
			break;
		case 4:
			// Grad(Q(0,0)).(0,1)/2 = e
			// Grad(Q(0,0)).(1,0)/2 = d
			if (e >= d)
			{
				edge = t0;
			}
			else
			{
				edge = s0;
			}
			break;
		case 5:
			edge = t0;
			break;
		case 6:
			// Grad(Q(1,0)).(-1,0)/2 = -a-d
			// Grad(Q(1,0)).(-1,1)/2 = -a-d+b+e
			tmp0 = -a - d;
			tmp1 = -a - d + b + e;
			if (tmp1 > tmp0)
			{
				edge = t0;
			}
			else
			{
				edge = s1t1;
			}
			break;
		default:
			break;
	}
	switch (edge)
	{
		case s0:
			// F(t) = Q(0, t), F'(t)=0 when -e/c = 0
			s = 0;
			if (e >= 0)
			{
				t = 0;
			}
			else
			{
				t = (-e >= c ? 1 : -e / c);
			}
			break;
		case t0:
			// F(s) = Q(s, 0), F'(s)=0 when -d/a = 0
			t = 0;
			if (d >= 0)
			{
				s = 0;
			}
			else
			{
				s = (-d >= a ? 1 : -d / a);
			}
			break;
		case s1t1:
			// F(s) = Q(s, 1-s), F'(s) = 0 when (c+e-b-d)/(a-2b+c) = 0 (denom = || tv01-tv02 ||^2 always > 0)
			numer = c + e - b - d;
			if (numer <= 0)
			{
				s = 0;
			}
			else
			{
				denom = a - 2 * b + c;
				s = (numer >= denom ? 1 : numer / denom);
			}
			t = 1 - s;
			break;
		case edge_skip:
			break;
		default:
			break;
	}
	*result = tv0 + s * tv01 + t * tv02;
	return ((*result) - pt).norm();
}

/// Calculate the intersection of a line segment with a triangle
/// See http://geomalgorithms.com/a06-_intersect-2.html#intersect_RayTriangle for the algorithm
/// \pre The normal must be unit length
/// \pre The triangle vertices must be in counter clockwise order in respect to the normal
/// \tparam T			Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt		Eigen Matrix options, can usually be inferred.
/// \param sv0,sv1		Extremities of the segment.
/// \param tv0,tv1,tv2	The triangle vertices. CCW around the normal.
/// \param tn			The triangle normal, should be normalized.
/// \param [out] result	The point where the triangle and the line segment intersect, invalid if they don't intersect.
/// \return true if the segment intersects with the triangle, false if it does not
/// \note HS-2013-may-07 This is the only function that only checks for intersection rather than returning a distance
/// 	  if necessary this should be rewritten to do the distance calculation, doing so would necessitate to check
/// 	  against all the triangle edges in the non intersection cases.
template <class T, int MOpt> inline
bool doesCollideSegmentTriangle(
	const Eigen::Matrix<T, 3, 1, MOpt>& sv0,
	const Eigen::Matrix<T, 3, 1, MOpt>& sv1,
	const Eigen::Matrix<T, 3, 1, MOpt>& tv0,
	const Eigen::Matrix<T, 3, 1, MOpt>& tv1,
	const Eigen::Matrix<T, 3, 1, MOpt>& tv2,
	const Eigen::Matrix<T, 3, 1, MOpt>& tn,
	Eigen::Matrix<T, 3, 1, MOpt>* result)
{
	// Triangle edges vectors
	Eigen::Matrix<T, 3, 1, MOpt> u = tv1 - tv0;
	Eigen::Matrix<T, 3, 1, MOpt> v = tv2 - tv0;

	// Ray direction vector
	Eigen::Matrix<T, 3, 1, MOpt> dir = sv1 - sv0;
	Eigen::Matrix<T, 3, 1, MOpt> w0 = sv0 - tv0;
	T a = -tn.dot(w0);
	T b = tn.dot(dir);

	result->setConstant((std::numeric_limits<double>::quiet_NaN()));

	// Ray is parallel to triangle plane
	if (std::abs(b) <= Geometry::AngularEpsilon)
	{
		if (std::abs(a) <= Geometry::AngularEpsilon)
		{
			// Ray lies in triangle plane
			Eigen::Matrix<T, 3, 1, MOpt> baryCoords;
			for (int i = 0; i < 2; ++i)
			{
				barycentricCoordinates((i == 0 ? sv0 : sv1), tv0, tv1, tv2, tn, &baryCoords);
				if (baryCoords[0] >= 0 && baryCoords[1] >= 0 && baryCoords[2] >= 0)
				{
					*result = (i == 0) ? sv0 : sv1;
					return true;
				}
			}
			// All segment endpoints outside of triangle
			return false;
		}
		else
		{
			// Segment parallel to triangle but not in same plane
			return false;
		}
	}

	// Get intersect point of ray with triangle plane
	T r = a / b;
	// Ray goes away from triangle
	if (r < -Geometry::DistanceEpsilon)
	{
		return false;
	}
	//Ray comes toward triangle but isn't long enough to reach it
	if (r > 1 + Geometry::DistanceEpsilon)
	{
		return false;
	}

	// Intersect point of ray and plane
	Eigen::Matrix<T, 3, 1, MOpt> presumedIntersection = sv0 + r * dir;
	// Collision point inside T?
	T uu = u.dot(u);
	T uv = u.dot(v);
	T vv = v.dot(v);
	Eigen::Matrix<T, 3, 1, MOpt> w = presumedIntersection - tv0;
	T wu = w.dot(u);
	T wv = w.dot(v);
	T D = uv * uv - uu * vv;
	// Get and test parametric coords
	T s = (uv * wv - vv * wu) / D;
	// I is outside T
	if (s < -Geometry::DistanceEpsilon || s > 1 + Geometry::DistanceEpsilon)
	{
		return false;
	}
	T t = (uv * wu - uu * wv) / D;
	// I is outside T
	if (t < -Geometry::DistanceEpsilon || (s + t) > 1 + Geometry::DistanceEpsilon)
	{
		return false;
	}
	// I is in T
	*result = sv0 + r * dir;
	return true;
}


/// Calculate the distance of a point to a plane
/// \pre n needs to the normalized
/// \tparam T		Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt	Eigen Matrix options, can usually be inferred.
/// \param pt		The point to check.
/// \param n		The normal of the plane n (normalized).
/// \param d		Constant d for the plane equation as in n.x + d = 0.
/// \param [out] result Projection of point p into the plane.
/// \return			The distance to the plane (negative if on the backside of the plane).
template <class T, int MOpt> inline
T distancePointPlane(
	const Eigen::Matrix<T, 3, 1, MOpt>& pt,
	const Eigen::Matrix<T, 3, 1, MOpt>& n,
	T d,
	Eigen::Matrix<T, 3, 1, MOpt>* result)
{
	T dist = n.dot(pt) + d;
	*result = pt - n * dist;
	return dist;
}


/// Calculate the distance between a segment and a plane.
/// \pre n should be normalized
/// \tparam T		Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt	Eigen Matrix options, can usually be inferred.
/// \param sv0,sv1	Endpoints of the segments.
/// \param n		Normal of the plane n (normalized).
/// \param d		Constant d in n.x + d = 0.
/// \param [out] closestPointSegment Point closest to the plane, the midpoint of the segment (v0+v1)/2
/// 				is being used if the segment is parallel to the plane. If the segment actually
/// 				intersects the plane segmentIntersectionPoint will be equal to planeIntersectionPoint.
/// \param [out] planeIntersectionPoint the point on the plane where the line defined by the segment
/// 				intersects the plane.
/// \return			the distance of closest point of the segment to the plane, 0 if the segment intersects the plane,
/// 				negative if the closest point is on the other side of the plane.
template <class T, int MOpt> inline
T distanceSegmentPlane(
	const Eigen::Matrix<T, 3, 1, MOpt>& sv0,
	const Eigen::Matrix<T, 3, 1, MOpt>& sv1,
	const Eigen::Matrix<T, 3, 1, MOpt>& n,
	T d,
	Eigen::Matrix<T, 3, 1, MOpt>* closestPointSegment,
	Eigen::Matrix<T, 3, 1, MOpt>* planeIntersectionPoint)
{
	T dist0 = n.dot(sv0) + d;
	T dist1 = n.dot(sv1) + d;
	// Parallel case
	Eigen::Matrix<T, 3, 1, MOpt> v01 = sv1 - sv0;
	if (std::abs(n.dot(v01)) <= Geometry::AngularEpsilon)
	{
		*closestPointSegment = (sv0 + sv1) * T(0.5);
		dist0 = n.dot(*closestPointSegment) + d;
		*planeIntersectionPoint = *closestPointSegment - dist0 * n;
		return (std::abs(dist0) < Geometry::DistanceEpsilon ? 0 : dist0);
	}
	// Both on the same side
	if ((dist0 > 0 && dist1 > 0) || (dist0 < 0 && dist1 < 0))
	{
		if (std::abs(dist0) < std::abs(dist1))
		{
			*closestPointSegment = sv0;
			*planeIntersectionPoint = sv0 - dist0 * n;
			return dist0;
		}
		else
		{
			*closestPointSegment = sv1;
			*planeIntersectionPoint = sv1 - dist1 * n;
			return dist1;
		}
	}
	// Segment cutting through
	else
	{
		Eigen::Matrix<T, 3, 1, MOpt> v01 = sv1 - sv0;
		T lambda = (-d - sv0.dot(n)) / v01.dot(n);
		*planeIntersectionPoint = sv0 + lambda * v01;
		*closestPointSegment = *planeIntersectionPoint;
		return 0;
	}
}


/// Calculate the distance of a triangle to a plane.
/// \pre n should be normalized.
/// \tparam T		Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt	Eigen Matrix options, can usually be inferred.
/// \param tv0,tv1,tv2 Points of the triangle.
/// \param n		Normal of the plane n (normalized).
/// \param d		Constant d in n.x + d = 0.
/// \param closestPointTriangle Closest point on the triangle, when the triangle is coplanar to
/// 				the plane (tv0+tv1+tv2)/3 is used, when the triangle intersects the plane the midpoint of
/// 				the intersection segment is returned.
/// \param planeProjectionPoint Projection of the closest point onto the plane, when the triangle intersects
/// 				the plane the midpoint of the intersection segment is returned.
/// \return The distance of the triangle to the plane.
template <class T, int MOpt> inline
T distanceTrianglePlane(
	const Eigen::Matrix<T, 3, 1, MOpt>& tv0,
	const Eigen::Matrix<T, 3, 1, MOpt>& tv1,
	const Eigen::Matrix<T, 3, 1, MOpt>& tv2,
	const Eigen::Matrix<T, 3, 1, MOpt>& n,
	T d,
	Eigen::Matrix<T, 3, 1, MOpt>* closestPointTriangle,
	Eigen::Matrix<T, 3, 1, MOpt>* planeProjectionPoint)
{
	Eigen::Matrix<T, 3, 1, MOpt> distances(n.dot(tv0) + d, n.dot(tv1) + d, n.dot(tv2) + d);
	Eigen::Matrix<T, 3, 1, MOpt> t01 = tv1 - tv0;
	Eigen::Matrix<T, 3, 1, MOpt> t02 = tv2 - tv0;
	Eigen::Matrix<T, 3, 1, MOpt> t12 = tv2 - tv1;

	closestPointTriangle->setConstant((std::numeric_limits<double>::quiet_NaN()));
	planeProjectionPoint->setConstant((std::numeric_limits<double>::quiet_NaN()));

	// HS-2013-may-09 Could there be a case where we fall into the wrong tree because of the checks against
	// the various epsilon values all going against us ???
	// Parallel case (including Coplanar)
	if (std::abs(n.dot(t01)) <= Geometry::AngularEpsilon && std::abs(n.dot(t02)) <= Geometry::AngularEpsilon)
	{
		*closestPointTriangle = (tv0 + tv1 + tv2) / T(3);
		*planeProjectionPoint = *closestPointTriangle - n * distances[0];
		return distances[0];
	}

	// Is there an intersection
	if ((distances.array() < -Geometry::DistanceEpsilon).any() &&
		(distances.array() > Geometry::DistanceEpsilon).any())
	{
		if (distances[0] * distances[1] < 0)
		{
			*closestPointTriangle = tv0 + (-d - n.dot(tv0)) / n.dot(t01) * t01;
			if (distances[0] * distances[2] < 0)
			{
				*planeProjectionPoint = tv0 + (-d - n.dot(tv0)) / n.dot(t02) * t02;
			}
			else
			{
				Eigen::Matrix<T, 3, 1, MOpt> t12 = tv2 - tv1;
				*planeProjectionPoint = tv1 + (-d - n.dot(tv1)) / n.dot(t12) * t12;
			}
		}
		else
		{
			*closestPointTriangle = tv0 + (-d - n.dot(tv0)) / n.dot(t02) * t02;
			*planeProjectionPoint = tv1 + (-d - n.dot(tv1)) / n.dot(t12) * t12;
		}

		// Find the midpoint, take this out to return the segment endpoints
		*closestPointTriangle = *planeProjectionPoint = (*closestPointTriangle + *planeProjectionPoint) * T(0.5);
		return 0;
	}

	int index;
	distances.cwiseAbs().minCoeff(&index);
	switch (index)
	{
		case 0: //distances[0] is closest
			*closestPointTriangle = tv0;
			*planeProjectionPoint = tv0 - n * distances[0];
			return distances[0];
		case 1: //distances[1] is closest
			*closestPointTriangle = tv1;
			*planeProjectionPoint = tv1 - n * distances[1];
			return distances[1];
		case 2: //distances[2] is closest
			*closestPointTriangle = tv2;
			*planeProjectionPoint = tv2 - n * distances[2];
			return distances[2];
	}

	return std::numeric_limits<T>::quiet_NaN();
}

/// Test if two planes are intersecting, if yes also calculate the intersection line.
/// \tparam T		Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt	Eigen Matrix options, can usually be inferred.
/// \param pn0,pd0	Normal and constant of the first plane, nx + d = 0.
/// \param pn1,pd1	Normal and constant of the second plane, nx + d = 0.
/// \param [out] pt0,pt1 Two points on the intersection line, not valid if there is no intersection.
/// \return true when a unique line exists, false for disjoint or coinciding.
template <class T, int MOpt> inline
bool doesIntersectPlanePlane(
	const Eigen::Matrix<T, 3, 1, MOpt>& pn0, T pd0,
	const Eigen::Matrix<T, 3, 1, MOpt>& pn1, T pd1,
	Eigen::Matrix<T, 3, 1, MOpt>* pt0,
	Eigen::Matrix<T, 3, 1, MOpt>* pt1)
{
	// Algorithm from real time collision detection - optimized version page 210 (with extra checks)
	const Eigen::Matrix<T, 3, 1, MOpt> lineDir = pn0.cross(pn1);
	const T lineDirNorm2 = lineDir.squaredNorm();

	pt0->setConstant((std::numeric_limits<double>::quiet_NaN()));
	pt1->setConstant((std::numeric_limits<double>::quiet_NaN()));

	// Test if the two planes are parallel
	if (lineDirNorm2 <= Geometry::SquaredDistanceEpsilon)
	{
		return false; // planes disjoint
	}
	// Compute common point
	*pt0 = (pd1 * pn0 - pd0 * pn1).cross(lineDir) / lineDirNorm2;
	*pt1 = *pt0 + lineDir;
	return true;
}


/// Calculate the distance of a line segment to a triangle.
/// Note that this version will calculate the normal of the triangle,
/// if the normal is known use the other version of this function.
/// \tparam T		Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt	Eigen Matrix options, can usually be inferred.
/// \param sv0,sv1	Extremities of the line segment.
/// \param tv0, tv1, tv2 Triangle points.
/// \param [out] segmentPoint Closest point on the segment.
/// \param [out] trianglePoint Closest point on the triangle.
/// \return the the distance between the two closest points, i.e. (trianglePoint - segmentPoint).norm().
template <class T, int MOpt> inline
T distanceSegmentTriangle(
	const Eigen::Matrix<T, 3, 1, MOpt>& sv0,
	const Eigen::Matrix<T, 3, 1, MOpt>& sv1,
	const Eigen::Matrix<T, 3, 1, MOpt>& tv0,
	const Eigen::Matrix<T, 3, 1, MOpt>& tv1,
	const Eigen::Matrix<T, 3, 1, MOpt>& tv2,
	Eigen::Matrix<T, 3, 1, MOpt>* segmentPoint,
	Eigen::Matrix<T, 3, 1, MOpt>* trianglePoint)
{
	Eigen::Matrix<T, 3, 1, MOpt> n = (tv1 - tv0).cross(tv2 - tv1);
	n.normalize();
	return distanceSegmentTriangle(sv0, sv1, tv0, tv1, tv2, n, segmentPoint, trianglePoint);
}

/// Calculate the distance of a line segment to a triangle.
/// \pre n needs to be normalized.
/// \tparam T		Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt	Eigen Matrix options, can usually be inferred.
/// \param sv0,sv1	Extremities of the line segment.
/// \param tv0, tv1, tv2 Points of the triangle.
/// \param normal		Normal of the triangle (Expected to be normalized)
/// \param [out] segmentPoint Closest point on the segment.
/// \param [out] trianglePoint Closest point on the triangle.
/// \return the distance between the two closest points.
template <class T, int MOpt> inline
T distanceSegmentTriangle(
	const Eigen::Matrix<T, 3, 1, MOpt>& sv0,
	const Eigen::Matrix<T, 3, 1, MOpt>& sv1,
	const Eigen::Matrix<T, 3, 1, MOpt>& tv0,
	const Eigen::Matrix<T, 3, 1, MOpt>& tv1,
	const Eigen::Matrix<T, 3, 1, MOpt>& tv2,
	const Eigen::Matrix<T, 3, 1, MOpt>& normal,
	Eigen::Matrix<T, 3, 1, MOpt>* segmentPoint,
	Eigen::Matrix<T, 3, 1, MOpt>* trianglePoint)
{
	segmentPoint->setConstant((std::numeric_limits<double>::quiet_NaN()));
	trianglePoint->setConstant((std::numeric_limits<double>::quiet_NaN()));

	// Setting up the plane that the triangle is in
	const Eigen::Matrix<T, 3, 1, MOpt>& n = normal;
	T d = -n.dot(tv0);
	Eigen::Matrix<T, 3, 1, MOpt> baryCoords;
	// Degenerate case: Line and triangle plane parallel
	const Eigen::Matrix<T, 3, 1, MOpt> v01 = sv1 - sv0;
	const T v01DotTn = n.dot(v01);
	if (std::abs(v01DotTn) <= Geometry::AngularEpsilon)
	{
		// Check if any of the points project onto the tri
		// otherwise normal (non-parallel) processing will get the right result
		T dst = std::abs(distancePointPlane(sv0, n, d, trianglePoint));
		Eigen::Matrix<T, 3, 1, MOpt> baryCoords;
		barycentricCoordinates(*trianglePoint, tv0, tv1, tv2, normal, &baryCoords);
		if (baryCoords[0] >= 0 && baryCoords[1] >= 0 && baryCoords[2] >= 0)
		{
			*segmentPoint = sv0;
			return dst;
		}
		dst = std::abs(distancePointPlane(sv1, n, d, trianglePoint));
		barycentricCoordinates(*trianglePoint, tv0, tv1, tv2, normal, &baryCoords);
		if (baryCoords[0] >= 0 && baryCoords[1] >= 0 && baryCoords[2] >= 0)
		{
			*segmentPoint = sv1;
			return dst;
		}
	}
	// Line and triangle plane *not* parallel: check cut through case only, the rest will be check later
	else
	{
		T lambda = -n.dot(sv0 - tv0) / v01DotTn;
		if (lambda >= 0 && lambda <= 1)
		{
			*segmentPoint = *trianglePoint = sv0 + lambda * v01;
			barycentricCoordinates(*trianglePoint, tv0, tv1, tv2, normal, &baryCoords);
			if (baryCoords[0] >= 0 && baryCoords[1] >= 0 && baryCoords[2] >= 0)
			{
				// Segment goes through the triangle
				return 0;
			}
		}
	}
	// At this point the segment is nearest point to one of the triangle edges or one of the end points
	Eigen::Matrix<T, 3, 1, MOpt> segColPt01, segColPt02, segColPt12, triColPt01, triColPt02, triColPt12;
	T dst01 = distanceSegmentSegment(sv0, sv1, tv0, tv1, &segColPt01, &triColPt01);
	T dst02 = distanceSegmentSegment(sv0, sv1, tv0, tv2, &segColPt02, &triColPt02);
	T dst12 = distanceSegmentSegment(sv0, sv1, tv1, tv2, &segColPt12, &triColPt12);
	Eigen::Matrix<T, 3, 1, MOpt> ptTriCol0, ptTriCol1;
	T dstPtTri0 = std::abs(distancePointPlane(sv0, n, d, &ptTriCol0));
	barycentricCoordinates(ptTriCol0, tv0, tv1, tv2, normal, &baryCoords);
	if (baryCoords[0] < 0 || baryCoords[1] < 0 || baryCoords[2] < 0)
	{
		dstPtTri0 = std::numeric_limits<T>::max();
	}
	T dstPtTri1 = std::abs(distancePointPlane(sv1, n, d, &ptTriCol1));
	barycentricCoordinates(ptTriCol1, tv0, tv1, tv2, normal, &baryCoords);
	if (baryCoords[0] < 0 || baryCoords[1] < 0 || baryCoords[2] < 0)
	{
		dstPtTri1 = std::numeric_limits<T>::max();
	}

	int minIndex;
	Eigen::Matrix<double, 5, 1> distances;
	(distances << dst01, dst02, dst12, dstPtTri0, dstPtTri1).finished().minCoeff(&minIndex);
	switch (minIndex)
	{
		case 0:
			*segmentPoint = segColPt01;
			*trianglePoint = triColPt01;
			return dst01;
		case 1:
			*segmentPoint = segColPt02;
			*trianglePoint = triColPt02;
			return dst02;
		case 2:
			*segmentPoint = segColPt12;
			*trianglePoint = triColPt12;
			return dst12;
		case 3:
			*segmentPoint = sv0;
			*trianglePoint = ptTriCol0;
			return dstPtTri0;
		case 4:
			*segmentPoint = sv1;
			*trianglePoint = ptTriCol1;
			return dstPtTri1;
	}

	// Invalid ...
	return std::numeric_limits<T>::quiet_NaN();

}


/// Calculate the distance between two triangles
/// \tparam T		Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt	Eigen Matrix options, can usually be inferred.
/// \param t0v0,t0v1,t0v2 Points of the first triangle.
/// \param t1v0,t1v1,t1v2 Points of the second triangle.
/// \param [out] closestPoint0 Closest point on the first triangle, unless penetrating,
/// 			 in which case it is the point along the edge that allows min separation.
/// \param [out] closestPoint1 Closest point on the second triangle, unless penetrating,
/// 			 in which case it is the point along the edge that allows min separation.
/// \return the distance between the two triangles.
template <class T, int MOpt> inline
T distanceTriangleTriangle(
	const Eigen::Matrix<T, 3, 1, MOpt>& t0v0,
	const Eigen::Matrix<T, 3, 1, MOpt>& t0v1,
	const Eigen::Matrix<T, 3, 1, MOpt>& t0v2,
	const Eigen::Matrix<T, 3, 1, MOpt>& t1v0,
	const Eigen::Matrix<T, 3, 1, MOpt>& t1v1,
	const Eigen::Matrix<T, 3, 1, MOpt>& t1v2,
	Eigen::Matrix<T, 3, 1, MOpt>* closestPoint0,
	Eigen::Matrix<T, 3, 1, MOpt>* closestPoint1)
{
	// Check the segments of t0 against t1
	T minDst = std::numeric_limits<T>::max();
	T currDst = 0;
	Eigen::Matrix<T, 3, 1, MOpt> segPt, triPt;
	Eigen::Matrix<T, 3, 1, MOpt> n0 = (t0v1 - t0v0).cross(t0v2 - t0v0);
	n0.normalize();
	Eigen::Matrix<T, 3, 1, MOpt> n1 = (t1v1 - t1v0).cross(t1v2 - t1v0);
	n1.normalize();
	currDst = distanceSegmentTriangle(t0v0, t0v1, t1v0, t1v1, t1v2, n1, &segPt, &triPt);
	if (currDst < minDst)
	{
		minDst = currDst;
		*closestPoint0 = segPt;
		*closestPoint1 = triPt;
	}
	currDst = distanceSegmentTriangle(t0v1, t0v2, t1v0, t1v1, t1v2, n1, &segPt, &triPt);
	if (currDst < minDst)
	{
		minDst = currDst;
		*closestPoint0 = segPt;
		*closestPoint1 = triPt;
	}
	currDst = distanceSegmentTriangle(t0v2, t0v0, t1v0, t1v1, t1v2, n1, &segPt, &triPt);
	if (currDst < minDst)
	{
		minDst = currDst;
		*closestPoint0 = segPt;
		*closestPoint1 = triPt;
	}
	// Check the segments of t1 against t0
	currDst = distanceSegmentTriangle(t1v0, t1v1, t0v0, t0v1, t0v2, n0, &segPt, &triPt);
	if (currDst < minDst)
	{
		minDst = currDst;
		*closestPoint1 = segPt;
		*closestPoint0 = triPt;
	}
	currDst = distanceSegmentTriangle(t1v1, t1v2, t0v0, t0v1, t0v2, n0, &segPt, &triPt);
	if (currDst < minDst)
	{
		minDst = currDst;
		*closestPoint1 = segPt;
		*closestPoint0 = triPt;
	}
	currDst = distanceSegmentTriangle(t1v2, t1v0, t0v0, t0v1, t0v2, n0, &segPt, &triPt);
	if (currDst < minDst)
	{
		minDst = currDst;
		*closestPoint1 = segPt;
		*closestPoint0 = triPt;
	}
	return (minDst);
}

/// Calculate the intersections between a line segment and an axis aligned box
/// \tparam T		Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt	Eigen Matrix options, can usually be inferred.
/// \param sv0,sv1	Extremities of the line segment.
/// \param box		Axis aligned bounding box
/// \param [out] intersections The points of intersection between the segment and the box
template <class T, int MOpt>
void intersectionsSegmentBox(
	const Eigen::Matrix<T, 3, 1, MOpt>& sv0,
	const Eigen::Matrix<T, 3, 1, MOpt>& sv1,
	const Eigen::AlignedBox<T, 3>& box,
	std::vector<Eigen::Matrix<T, 3, 1, MOpt>>* intersections)
{
	Eigen::Array<T, 3, 1, MOpt> v01 = sv1 - sv0;
	Eigen::Array<bool, 3, 1, MOpt> parallelToPlane = (v01.cwiseAbs().array() < Geometry::DistanceEpsilon);
	if (parallelToPlane.any())
	{
		Eigen::Array<bool, 3, 1, MOpt> beyondMinCorner = (sv0.array() < box.min().array());
		Eigen::Array<bool, 3, 1, MOpt> beyondMaxCorner = (sv0.array() > box.max().array());
		if ((parallelToPlane && (beyondMinCorner || beyondMaxCorner)).any())
		{
			return;
		}
	}

	// Calculate the intersection of the segment with each of the 6 box planes.
	// The intersection is calculated as the distance along the segment (abscissa)
	// scaled from 0 to 1.
	Eigen::Array<T, 3, 2, MOpt> planeIntersectionAbscissas;
	planeIntersectionAbscissas.col(0) = (box.min().array() - sv0.array());
	planeIntersectionAbscissas.col(1) = (box.max().array() - sv0.array());

	// While we could be dividing by zero here, INF values are
	// correctly handled by the rest of the function.
	planeIntersectionAbscissas.colwise() /= v01;

	T entranceAbscissa = planeIntersectionAbscissas.rowwise().minCoeff().maxCoeff();
	T exitAbscissa = planeIntersectionAbscissas.rowwise().maxCoeff().minCoeff();
	if (entranceAbscissa < exitAbscissa && exitAbscissa > T(0.0))
	{
		if (entranceAbscissa >= T(0.0) && entranceAbscissa <= T(1.0))
		{
			intersections->push_back(sv0 + v01.matrix() * entranceAbscissa);
		}

		if (exitAbscissa >= T(0.0) && exitAbscissa <= T(1.0))
		{
			intersections->push_back(sv0 + v01.matrix() * exitAbscissa);
		}
	}
}

/// Test if an axis aligned box intersects with a capsule
/// \tparam T Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt Eigen Matrix options, can usually be inferred.
/// \param capsuleBottom Position of the capsule bottom
/// \param capsuleTop Position of the capsule top
/// \param capsuleRadius The capsule radius
/// \param box Axis aligned bounding box
/// \return True, if intersection is detected.
template <class T, int MOpt>
bool doesIntersectBoxCapsule(
	const Eigen::Matrix<T, 3, 1, MOpt>& capsuleBottom,
	const Eigen::Matrix<T, 3, 1, MOpt>& capsuleTop,
	const T capsuleRadius,
	const Eigen::AlignedBox<T, 3>& box)
{
	Eigen::AlignedBox<double, 3> dilatedBox(box.min().array() - capsuleRadius, box.max().array() + capsuleRadius);
	std::vector<Vector3d> candidates;
	intersectionsSegmentBox(capsuleBottom, capsuleTop, dilatedBox, &candidates);
	if (dilatedBox.contains(capsuleBottom))
	{
		candidates.push_back(capsuleBottom);
	}
	if (dilatedBox.contains(capsuleTop))
	{
		candidates.push_back(capsuleTop);
	}

	bool doesIntersect = false;
	ptrdiff_t dimensionsOutsideBox;
	Vector3d clampedPosition, segmentPoint;
	for (auto candidate = candidates.cbegin(); candidate != candidates.cend(); ++candidate)
	{
		// Collisions between a capsule and a box are the same as a segment and a dilated
		// box with rounded corners. If the intersection occurs outside the original box
		// in two dimensions (collision with an edge of the dilated box) or three
		// dimensions (collision with the corner of the dilated box) dimensions, we need
		// to check if it is inside these rounded corners.
		dimensionsOutsideBox = (candidate->array() > box.max().array()).count();
		dimensionsOutsideBox += (candidate->array() < box.min().array()).count();
		if (dimensionsOutsideBox >= 2)
		{
			clampedPosition = (*candidate).array().min(box.max().array()).max(box.min().array());
			if (distancePointSegment(clampedPosition, capsuleBottom, capsuleTop, &segmentPoint) > capsuleRadius)
			{
				// Doesn't intersect, try the next candidate.
				continue;
			}
		}
		doesIntersect = true;
		break;
	}
	return doesIntersect;
}

/// Helper method to determine the nearest point between a point and a line.
/// \tparam T the numeric data type used for the vector argument. Can usually be deduced.
/// \tparam VOpt the option flags (alignment etc.) used for the vector argument. Can be deduced.
/// \param point is the point under consideration.
/// \param segment0 one point on the line
/// \param segment1 second point on the line
/// \return the closest point on the line through the segment to the point under test
template <class T, int VOpt>
Eigen::Matrix<T, 3, 1, VOpt> nearestPointOnLine(const Eigen::Matrix<T, 3, 1, VOpt>& point,
		const Eigen::Matrix<T, 3, 1, VOpt>& segment0, const Eigen::Matrix<T, 3, 1, VOpt>& segment1)
{
	auto pointToSegmentStart = segment0 - point;
	auto segmentDirection = segment1 - segment0;
	auto squaredNorm = segmentDirection.squaredNorm();
	SURGSIM_ASSERT(squaredNorm != 0.0) << "Line is defined by two collocated points.";
	auto distance = -pointToSegmentStart.dot(segmentDirection) / squaredNorm;
	auto p0Proj = segment0 + distance * segmentDirection;
	return p0Proj;
}

/// Check if the two triangles intersect using separating axis test.
/// Algorithm is implemented from http://fileadmin.cs.lth.se/cs/Personal/Tomas_Akenine-Moller/pubs/tritri.pdf
///
/// \tparam T		Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt	Eigen Matrix options, can usually be inferred.
/// \param t0v0,t0v1,t0v2 Vertices of the first triangle.
/// \param t1v0,t1v1,t1v2 Vertices of the second triangle.
/// \param t0n Normal of the first triangle, should be normalized.
/// \param t1n Normal of the second triangle, should be normalized.
/// \return True, if intersection is detected.
template <class T, int MOpt> inline
bool doesIntersectTriangleTriangle(
	const Eigen::Matrix<T, 3, 1, MOpt>& t0v0,
	const Eigen::Matrix<T, 3, 1, MOpt>& t0v1,
	const Eigen::Matrix<T, 3, 1, MOpt>& t0v2,
	const Eigen::Matrix<T, 3, 1, MOpt>& t1v0,
	const Eigen::Matrix<T, 3, 1, MOpt>& t1v1,
	const Eigen::Matrix<T, 3, 1, MOpt>& t1v2,
	const Eigen::Matrix<T, 3, 1, MOpt>& t0n,
	const Eigen::Matrix<T, 3, 1, MOpt>& t1n);

/// Check if the two triangles intersect using separating axis test.
/// \tparam T		Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt	Eigen Matrix options, can usually be inferred.
/// \param t0v0,t0v1,t0v2 Vertices of the first triangle.
/// \param t1v0,t1v1,t1v2 Vertices of the second triangle.
/// \return True, if intersection is detected.
template <class T, int MOpt> inline
bool doesIntersectTriangleTriangle(
	const Eigen::Matrix<T, 3, 1, MOpt>& t0v0,
	const Eigen::Matrix<T, 3, 1, MOpt>& t0v1,
	const Eigen::Matrix<T, 3, 1, MOpt>& t0v2,
	const Eigen::Matrix<T, 3, 1, MOpt>& t1v0,
	const Eigen::Matrix<T, 3, 1, MOpt>& t1v1,
	const Eigen::Matrix<T, 3, 1, MOpt>& t1v2);

/// Calculate the contact between two triangles.
/// Algorithm presented in
/// https://docs.google.com/a/simquest.com/document/d/11ajMD7QoTVelT2_szGPpeUEY0wHKKxW1TOgMe8k5Fsc/pub.
/// If the triangle are known to intersect, the deepest penetration of the triangles into each other is calculated.
/// The triangle which penetrates less into the other triangle is chosen as contact.
/// \tparam T		Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt	Eigen Matrix options, can usually be inferred.
/// \param t0v0,t0v1,t0v2 Vertices of the first triangle.
/// \param t1v0,t1v1,t1v2 Vertices of the second triangle.
/// \param t0n Unit length normal of the first triangle, should be normalized.
/// \param t1n Unit length normal of the second triangle, should be normalized.
/// \param [out] penetrationDepth The depth of penetration.
/// \param [out] penetrationPoint0 The contact point on triangle0 (t0v0,t0v1,t0v2).
/// \param [out] penetrationPoint1 The contact point on triangle1 (t1v0,t1v1,t1v2).
/// \param [out] contactNormal The contact normal that points from triangle1 to triangle0.
/// \return True, if intersection is detected.
/// \note The [out] params are not modified if there is no intersection.
/// \note If penetrationPoint0 is moved by (contactNormal*penetrationDepth*0.5) and penetrationPoint1
/// is moved by -(contactNormal*penetrationDepth*0.5), the triangles will no longer be intersecting.
template <class T, int MOpt> inline
bool calculateContactTriangleTriangle(
	const Eigen::Matrix<T, 3, 1, MOpt>& t0v0,
	const Eigen::Matrix<T, 3, 1, MOpt>& t0v1,
	const Eigen::Matrix<T, 3, 1, MOpt>& t0v2,
	const Eigen::Matrix<T, 3, 1, MOpt>& t1v0,
	const Eigen::Matrix<T, 3, 1, MOpt>& t1v1,
	const Eigen::Matrix<T, 3, 1, MOpt>& t1v2,
	const Eigen::Matrix<T, 3, 1, MOpt>& t0n,
	const Eigen::Matrix<T, 3, 1, MOpt>& t1n,
	T* penetrationDepth,
	Eigen::Matrix<T, 3, 1, MOpt>* penetrationPoint0,
	Eigen::Matrix<T, 3, 1, MOpt>* penetrationPoint1,
	Eigen::Matrix<T, 3, 1, MOpt>* contactNormal);

/// Calculate the contact between two triangles.
/// Algorithm presented in
/// https://docs.google.com/a/simquest.com/document/d/11ajMD7QoTVelT2_szGPpeUEY0wHKKxW1TOgMe8k5Fsc/pub.
/// If the triangle are known to intersect, the deepest penetration of the triangles into each other is calculated.
/// The triangle which penetrates less into the other triangle is chosen as contact.
/// \tparam T		Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt	Eigen Matrix options, can usually be inferred.
/// \param t0v0,t0v1,t0v2 Vertices of the first triangle, should be normalized.
/// \param t1v0,t1v1,t1v2 Vertices of the second triangle, should be normalized.
/// \param [out] penetrationDepth The depth of penetration.
/// \param [out] penetrationPoint0 The contact point on triangle0 (t0v0,t0v1,t0v2).
/// \param [out] penetrationPoint1 The contact point on triangle1 (t1v0,t1v1,t1v2).
/// \param [out] contactNormal The contact normal that points from triangle1 to triangle0.
/// \return True, if intersection is detected.
/// \note The [out] params are not modified if there is no intersection.
/// \note If penetrationPoint0 is moved by (contactNormal*penetrationDepth*0.5) and penetrationPoint1
/// is moved by -(contactNormal*penetrationDepth*0.5), the triangles will no longer be intersecting.
template <class T, int MOpt> inline
bool calculateContactTriangleTriangle(
	const Eigen::Matrix<T, 3, 1, MOpt>& t0v0,
	const Eigen::Matrix<T, 3, 1, MOpt>& t0v1,
	const Eigen::Matrix<T, 3, 1, MOpt>& t0v2,
	const Eigen::Matrix<T, 3, 1, MOpt>& t1v0,
	const Eigen::Matrix<T, 3, 1, MOpt>& t1v1,
	const Eigen::Matrix<T, 3, 1, MOpt>& t1v2,
	T* penetrationDepth,
	Eigen::Matrix<T, 3, 1, MOpt>* penetrationPoint0,
	Eigen::Matrix<T, 3, 1, MOpt>* penetrationPoint1,
	Eigen::Matrix<T, 3, 1, MOpt>* contactNormal);

/// Calculate the contact between two triangles.
/// Algorithm is implemented from http://fileadmin.cs.lth.se/cs/Personal/Tomas_Akenine-Moller/pubs/tritri.pdf
///
/// \tparam T		Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt	Eigen Matrix options, can usually be inferred.
/// \param t0v0,t0v1,t0v2 Vertices of the first triangle.
/// \param t1v0,t1v1,t1v2 Vertices of the second triangle.
/// \param t0n Normal of the first triangle, should be normalized.
/// \param t1n Normal of the second triangle, should be normalized.
/// \param [out] penetrationDepth The depth of penetration.
/// \param [out] penetrationPoint0 The contact point on triangle0 (t0v0,t0v1,t0v2).
/// \param [out] penetrationPoint1 The contact point on triangle1 (t1v0,t1v1,t1v2).
/// \param [out] contactNormal The contact normal that points from triangle1 to triangle0.
/// \return True, if intersection is detected.
/// \note The [out] params are not modified if there is no intersection.
/// \note If penetrationPoint0 is moved by (contactNormal*penetrationDepth*0.5) and penetrationPoint1
/// is moved by -(contactNormal*penetrationDepth*0.5), the triangles will no longer be intersecting.
template <class T, int MOpt> inline
bool calculateContactTriangleTriangleSeparatingAxis(
	const Eigen::Matrix<T, 3, 1, MOpt>& t0v0,
	const Eigen::Matrix<T, 3, 1, MOpt>& t0v1,
	const Eigen::Matrix<T, 3, 1, MOpt>& t0v2,
	const Eigen::Matrix<T, 3, 1, MOpt>& t1v0,
	const Eigen::Matrix<T, 3, 1, MOpt>& t1v1,
	const Eigen::Matrix<T, 3, 1, MOpt>& t1v2,
	const Eigen::Matrix<T, 3, 1, MOpt>& t0n,
	const Eigen::Matrix<T, 3, 1, MOpt>& t1n,
	T* penetrationDepth,
	Eigen::Matrix<T, 3, 1, MOpt>* penetrationPoint0,
	Eigen::Matrix<T, 3, 1, MOpt>* penetrationPoint1,
	Eigen::Matrix<T, 3, 1, MOpt>* contactNormal);

/// Calculate the contact between two triangles.
/// \tparam T		Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt	Eigen Matrix options, can usually be inferred.
/// \param t0v0,t0v1,t0v2 Vertices of the first triangle.
/// \param t1v0,t1v1,t1v2 Vertices of the second triangle.
/// \param [out] penetrationDepth The depth of penetration.
/// \param [out] penetrationPoint0 The contact point on triangle0 (t0v0,t0v1,t0v2).
/// \param [out] penetrationPoint1 The contact point on triangle1 (t1v0,t1v1,t1v2).
/// \param [out] contactNormal The contact normal that points from triangle1 to triangle0.
/// \return True, if intersection is detected.
/// \note The [out] params are not modified if there is no intersection.
/// \note If penetrationPoint0 is moved by (contactNormal*penetrationDepth*0.5) and penetrationPoint1
/// is moved by -(contactNormal*penetrationDepth*0.5), the triangles will no longer be intersecting.
template <class T, int MOpt> inline
bool calculateContactTriangleTriangleSeparatingAxis(
	const Eigen::Matrix<T, 3, 1, MOpt>& t0v0,
	const Eigen::Matrix<T, 3, 1, MOpt>& t0v1,
	const Eigen::Matrix<T, 3, 1, MOpt>& t0v2,
	const Eigen::Matrix<T, 3, 1, MOpt>& t1v0,
	const Eigen::Matrix<T, 3, 1, MOpt>& t1v1,
	const Eigen::Matrix<T, 3, 1, MOpt>& t1v2,
	T* penetrationDepth,
	Eigen::Matrix<T, 3, 1, MOpt>* penetrationPoint0,
	Eigen::Matrix<T, 3, 1, MOpt>* penetrationPoint1,
	Eigen::Matrix<T, 3, 1, MOpt>* contactNormal);

/// Calculate the contact between a capsule and a triangle.
/// If the shapes intersect, the deepest penetration of the capsule along the triangle normal is calculated.
/// \tparam T		Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt	Eigen Matrix options, can usually be inferred.
/// \param tv0,tv1,tv2 Vertices of the triangle.
/// \param tn Normal of the triangle, should be normalized.
/// \param cv0,cv1 Ends of the capsule axis.
/// \param cr Capsule radius.
/// \param [out] penetrationDepth The depth of penetration.
/// \param [out] penetrationPointTriangle The contact point on triangle.
/// \param [out] penetrationPointCapsule The contact point on capsule.
/// \param [out] contactNormal The contact normal that points from capsule to triangle.
/// \param [out] penetrationPointCapsuleAxis The point on the capsule axis closest to the triangle.
/// \return True, if intersection is detected.
/// \note The [out] params are not modified if there is no intersection.
/// \note If penetrationPointTriangle is moved by (contactNormal*penetrationDepth*0.5) and penetrationPointCapsule
/// is moved by -(contactNormal*penetrationDepth*0.5), the shapes will no longer be intersecting.
template <class T, int MOpt> inline
bool calculateContactTriangleCapsule(
	const Eigen::Matrix<T, 3, 1, MOpt>& tv0,
	const Eigen::Matrix<T, 3, 1, MOpt>& tv1,
	const Eigen::Matrix<T, 3, 1, MOpt>& tv2,
	const Eigen::Matrix<T, 3, 1, MOpt>& tn,
	const Eigen::Matrix<T, 3, 1, MOpt>& cv0,
	const Eigen::Matrix<T, 3, 1, MOpt>& cv1,
	double cr,
	T* penetrationDepth,
	Eigen::Matrix<T, 3, 1, MOpt>* penetrationPointTriangle,
	Eigen::Matrix<T, 3, 1, MOpt>* penetrationPointCapsule,
	Eigen::Matrix<T, 3, 1, MOpt>* contactNormal,
	Eigen::Matrix<T, 3, 1, MOpt>* penetrationPointCapsuleAxis);

/// Calculate the contact between a capsule and a triangle.
/// If the shapes intersect, the deepest penetration of the capsule along the triangle normal is calculated.
/// \tparam T		Accuracy of the calculation, can usually be inferred.
/// \tparam MOpt	Eigen Matrix options, can usually be inferred.
/// \param tv0,tv1,tv2 Vertices of the triangle.
/// \param cv0,cv1 Ends of the capsule axis.
/// \param cr Capsule radius.
/// \param [out] penetrationDepth The depth of penetration.
/// \param [out] penetrationPointTriangle The contact point on triangle.
/// \param [out] penetrationPointCapsule The contact point on capsule.
/// \param [out] contactNormal The contact normal that points from capsule to triangle.
/// \param [out] penetrationPointCapsuleAxis The point on the capsule axis closest to the triangle.
/// \return True, if intersection is detected.
/// \note The [out] params are not modified if there is no intersection.
/// \note If penetrationPointTriangle is moved by (contactNormal*penetrationDepth*0.5) and penetrationPointCapsule
/// is moved by -(contactNormal*penetrationDepth*0.5), the shapes will no longer be intersecting.
template <class T, int MOpt> inline
bool calculateContactTriangleCapsule(
	const Eigen::Matrix<T, 3, 1, MOpt>& tv0,
	const Eigen::Matrix<T, 3, 1, MOpt>& tv1,
	const Eigen::Matrix<T, 3, 1, MOpt>& tv2,
	const Eigen::Matrix<T, 3, 1, MOpt>& cv0,
	const Eigen::Matrix<T, 3, 1, MOpt>& cv1,
	double cr,
	T* penetrationDepth,
	Eigen::Matrix<T, 3, 1, MOpt>* penetrationPointTriangle,
	Eigen::Matrix<T, 3, 1, MOpt>* penetrationPointCapsule,
	Eigen::Matrix<T, 3, 1, MOpt>* contactNormal,
	Eigen::Matrix<T, 3, 1, MOpt>* penetrationPointCapsuleAxis);

/// Test when 4 points are coplanar in the range [0..1] given their linear motion
/// \tparam T The scalar type
/// \tparam MOpt The matrix options
/// \param A, B, C, D the 4 point' motion (each has a pair from -> to)
/// \param[out] timesOfCoplanarity The normalized times (in [0..1]) at which the 4 points are coplanar
/// \return The number of times the 4 points are coplanar throughout their motion in [0..1]
template <class T, int MOpt>
int timesOfCoplanarityInRange01(
	const std::pair<Eigen::Matrix<T, 3, 1, MOpt>, Eigen::Matrix<T, 3, 1, MOpt>>& A,
	const std::pair<Eigen::Matrix<T, 3, 1, MOpt>, Eigen::Matrix<T, 3, 1, MOpt>>& B,
	const std::pair<Eigen::Matrix<T, 3, 1, MOpt>, Eigen::Matrix<T, 3, 1, MOpt>>& C,
	const std::pair<Eigen::Matrix<T, 3, 1, MOpt>, Eigen::Matrix<T, 3, 1, MOpt>>& D,
	std::array<T, 3>* timesOfCoplanarity)
{
	/// Let's define the following:
	/// A(t) = A0 + t * VA with VA = A1 - A0
	/// Similarily for B(t), C(t) and D(t)
	/// Therefore we have AB(t) = B(t) - A(t) = B(0) + t * VB - A(0) - t * VA
	///                         = AB(0) + t * [VB - VA] = AB(0) + t * VAB
	///
	/// The 4 points ABCD are coplanar are time t if they verify:
	/// [AB(t).cross(CD(t))].AC(t) = 0
	/// We develop this equation to clearly formulate the resulting cubic equation:
	///
	/// [AB(0).cross(CD(0)) + t*AB(0).cross(VCD) + t*VAB.cross(CD(0)) + t^2*VAB.cross(VCD)] . [AC(0) + t * VAC] = 0
	/// t^0 * [[AB(0).cross(CD(0))].AC(0)] +
	/// t^1 * [[AB(0).cross(CD(0))].VAC + [AB(0).cross(VCD)].AC(0) + [VAB.cross(CD(0))].AC(0)] +
	/// t^2 * [[AB(0).cross(VCD)].VAC + [VAB.cross(CD(0))].VAC + [VAB.cross(VCD)].AC(0)] +
	/// t^3 * [[VAB.cross(VCD)].VAC] = 0
	Eigen::Matrix<T, 3, 1, MOpt> AB0 = B.first - A.first;
	Eigen::Matrix<T, 3, 1, MOpt> AC0 = C.first - A.first;
	Eigen::Matrix<T, 3, 1, MOpt> CD0 = D.first - C.first;
	Eigen::Matrix<T, 3, 1, MOpt> VA = (A.second - A.first);
	Eigen::Matrix<T, 3, 1, MOpt> VC = (C.second - C.first);
	Eigen::Matrix<T, 3, 1, MOpt> VAB = (B.second - B.first) - VA;
	Eigen::Matrix<T, 3, 1, MOpt> VAC = VC - VA;
	Eigen::Matrix<T, 3, 1, MOpt> VCD = (D.second - D.first) - VC;
	T a0 = AB0.cross(CD0).dot(AC0);
	T a1 = AB0.cross(CD0).dot(VAC) + (AB0.cross(VCD) + VAB.cross(CD0)).dot(AC0);
	T a2 = (AB0.cross(VCD) + VAB.cross(CD0)).dot(VAC) + VAB.cross(VCD).dot(AC0);
	T a3 = VAB.cross(VCD).dot(VAC);

	return findRootsInRange01(Polynomial<T, 3>(a0, a1, a2, a3), timesOfCoplanarity);
}

}; // namespace Math
}; // namespace SurgSim


#include "SurgSim/Math/PointTriangleCcdContactCalculation-inl.h"
#include "SurgSim/Math/SegmentSegmentCcdContactCalculation-inl.h"
#include "SurgSim/Math/TriangleCapsuleContactCalculation-inl.h"
#include "SurgSim/Math/TriangleTriangleIntersection-inl.h"
#include "SurgSim/Math/TriangleTriangleContactCalculation-inl.h"

#endif