This file is indexed.

/usr/include/SurgSim/DataStructures/Grid-inl.h is in libopensurgsim-dev 0.7.0-6ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
// This file is a part of the OpenSurgSim project.
// Copyright 2013, SimQuest Solutions Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef SURGSIM_DATASTRUCTURES_GRID_INL_H
#define SURGSIM_DATASTRUCTURES_GRID_INL_H

#include <boost/functional/hash.hpp>

namespace SurgSim
{
namespace DataStructures
{

namespace
{

/// Class handling number in a given base with a given number of digits
/// Example numbers in base 3 with 3 digits are defined in order:
/// 000, 001, 002, 010, 011, 012, 020, 021, 022,
/// 100, 101, 102, 110, 111, 112, 120, 121, 122
/// 200, 201, 202, 210, 211, 212, 220, 221, 222
/// Note that the storage is done in Eigen column-major vector (ith entry corresponds to the ith degree of the base)
/// Expected usage looking for all neighbors in a 3d array:
///    Number<size_t, 3, 3> neighborOffset;
///    Eigen::Matrix<size_t, 3, 1> currentElement = ...; // Location of an element in a 3d grid;
///    do{
///      Eigen::Matrix<size_t, 3, 1> neighborElement = currentElement + neighborOffset;
///      // do something with the neighbor element
/// ...} while (neighborOffset.next());
/// \tparam T The type storing the number (must be an integral type)
/// \tparam B The base in which the number is expressed (must be within [2..9])
/// \tparam N The number of digits for this number
template <typename T, size_t B, size_t N>
class Number : public Eigen::Matrix<T, N, 1>
{
public:
	static_assert(B > 1 && B < 10, "B (the base) needs to be within [2..9]");

	/// Constructor
	Number()
	{
		this->setZero();
	}

	/// \return the number expressed in base 10
	size_t toDecimal() const
	{
		size_t value = 0;
		size_t BexponentDigit = 1;
		for (size_t digit = 0; digit < N; ++digit)
		{
			value += (*this)[digit] * BexponentDigit;
			BexponentDigit *= B;
		}
		return value;
	}

	/// Increment the number
	/// \return False if there is no next number on N digits, True otherwise.
	bool next()
	{
		size_t digit = 0;
		do
		{
			(*this)[digit]++;
			if ((*this)[digit] == B)
			{
				(*this)[digit] = 0;
			}
			else
			{
				return true;
			}
			digit++;
		}
		while (digit < N);

		return false;
	}
};
}; // namespace


template <typename T, size_t N>
size_t Grid<T, N>::NDIdHash::operator()(const NDId& nd) const
{
	return boost::hash_range(nd.data(), nd.data() + N);
}

template <typename T, size_t N>
Grid<T, N>::Grid(const Eigen::Matrix<double, N, 1>& cellSize, const Eigen::AlignedBox<double, N>& bounds)
	: m_size(cellSize),
	  m_aabb(bounds),
	  m_neighborsDirtyFlag(false)
{
	static_assert(N >= 1, "A grid must have a positive non null dimension");
}

template <typename T, size_t N>
Grid<T, N>::~Grid()
{
}

template <typename T, size_t N>
void Grid<T, N>::reset()
{
	// Clear the mapping element -> cellId
	m_cellIds.clear();

	// Clear the active cells
	m_activeCells.clear();

	// Nothing in the grid (no elements, no neighbors)...so it is up to date
	m_neighborsDirtyFlag = false;
}

template <typename T, size_t N>
template <class Derived>
void Grid<T, N>::addElement(const T element, const Eigen::MatrixBase<Derived>& position)
{
	// Only add element that are located in the grid
	if (!m_aabb.contains(position))
	{
		return;
	}

	// Find the dimension-N cell id from the location
	// Example in 3D: cell (i, j, k) has 3D min/max coordinates
	//   min[axis] = (size[axis] * (-numCellPerDim[axis] / 2 + i)
	//   max[axis] = (size[axis] * (-numCellPerDim[axis] / 2 + i + 1)
	NDId cellId = ((position - m_aabb.min()).cwiseQuotient(m_size)).template cast<int>();

	// Register the element into its corresponding cell if it exists, or creates it.
	m_activeCells[cellId].elements.push_back(element);

	// Add this element in the map [element -> cellID]
	m_cellIds[element] = cellId;

	/// Flag that the neighbors list will need to be recomputed on the next access
	m_neighborsDirtyFlag = true;
}

template <typename T, size_t N>
void Grid<T, N>::update()
{
	std::array<NDId, powerOf3<N>::value> cellsIds;

	// Start by clearing up all the neighbor's list
	for (typename std::unordered_map<NDId, typename Grid<T, N>::CellContent, NDIdHash>::reference cell : m_activeCells)
	{
		cell.second.neighbors.clear();
	}

	// Compute each cell's neighbors list
	for (typename std::unordered_map<NDId, typename Grid<T, N>::CellContent, NDIdHash>::reference cell : m_activeCells)
	{
		getNeighborsCellIds(cell.first, &cellsIds);

		for (size_t index = 0; index < powerOf3<N>::value; ++index)
		{
			// Use symmetry between pair of cells to only treat neighbors with a larger or equal id.
			if (isNdGreaterOrEqual(cellsIds[index], cell.first))
			{
				auto neighborCell = m_activeCells.find(cellsIds[index]);
				if (neighborCell != m_activeCells.end())
				{
					cell.second.neighbors.insert(cell.second.neighbors.end(),
												 neighborCell->second.elements.cbegin(),
												 neighborCell->second.elements.cend());

					// Treat symmetry if the cells are different
					if (cellsIds[index] != cell.first)
					{
						neighborCell->second.neighbors.insert(neighborCell->second.neighbors.end(),
															  cell.second.elements.cbegin(),
															  cell.second.elements.cend());
					}
				}
			}
		}
	}
	m_neighborsDirtyFlag = false;
}

template <typename T, size_t N>
const std::vector<T>& Grid<T, N>::getNeighbors(const T& element)
{
	static std::vector<T> empty;

	if (m_neighborsDirtyFlag)
	{
		update();
	}

	auto const foundCell = m_cellIds.find(element);
	if (foundCell != m_cellIds.cend())
	{
		return m_activeCells[foundCell->second].neighbors;
	}

	return empty;
}

template <typename T, size_t N>
template <class Derived>
const std::vector<T>& Grid<T, N>::getNeighbors(const Eigen::MatrixBase<Derived>& position)
{
	static const std::vector<T> empty;

	// If outside the bounding box, can't find any neighbors
	if (m_aabb.contains(position))
	{
		if (m_neighborsDirtyFlag)
		{
			update();
		}

		NDId cellId = ((position - m_aabb.min()).cwiseQuotient(m_size)).template cast<int>();

		auto foundCell = m_activeCells.find(cellId);
		if (foundCell == m_activeCells.end())
		{
			// If the cell doesn't exist, collect all the neighbors
			std::array<NDId, powerOf3<N>::value> cellsIds;
			getNeighborsCellIds(cellId, &cellsIds);
			std::vector<T> neighbors;
			for (const auto& neighborId : cellsIds)
			{
				auto neighborCell = m_activeCells.find(neighborId);
				if (neighborCell != m_activeCells.end())
				{
					neighbors.insert(neighbors.end(),
									 neighborCell->second.elements.cbegin(),
									 neighborCell->second.elements.cend());
				}
			}
			m_activeCells[cellId].neighbors = std::move(neighbors);
		}
		return m_activeCells[cellId].neighbors;
	}
	return empty;
}

template <typename T, size_t N>
void Grid<T, N>::getNeighborsCellIds(NDId cellId,
									 std::array<NDId, powerOf3<N>::value>* cellsIds)
{
	// Now build up all the 3^N neighbors cell around this n-d cell
	// It corresponds to all possible permutation in dimension-N of the indices
	// {(cellIdnD[0] - 1, cellIdnD[0], cellIdnD[0] + 1) x ... x
	//  (cellIdnD[N - 1] - 1, cellIdnD[N - 1], cellIdnD[N - 1] + 1)}
	// It is (cellIdnD[0] - 1, ... , cellIdnD[N - 1] - 1) + all possible number in base 3 with N digit
	// For example in 2D, the NumberInBase3<2> are in order: 00 01 02 10 11 12 20 21 22
	// For example in 3D, the NumberInBase3<3> are in order:
	//   000 001 002 010 011 012 020 021 022
	//   100 101 102 110 111 112 120 121 122
	//   200 201 202 210 211 212 220 221 222
	cellId -= NDId::Ones();

	Number<int, 3, N> currentNumberNDigitBase3;
	for (size_t i = 0; i < powerOf3<N>::value; ++i)
	{
		(*cellsIds)[i] = cellId + currentNumberNDigitBase3;
		currentNumberNDigitBase3.next();
	}
}

template <typename T, size_t N>
bool Grid<T, N>::isNdGreaterOrEqual(const NDId& a, const NDId& b)
{
	for (size_t i = 0; i < N; ++i)
	{
		if (a[i] > b[i])
		{
			return true;
		}

		if (a[i] < b[i])
		{
			return false;
		}
	}
	return true;
}

}; // namespace DataStructures
}; // namespace SurgSim

#endif // SURGSIM_DATASTRUCTURES_GRID_INL_H