This file is indexed.

/usr/include/osg/Matrixf is in libopenscenegraph-dev 3.2.3+dfsg1-2ubuntu8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
/* -*-c++-*- OpenSceneGraph - Copyright (C) 1998-2004 Robert Osfield
 *
 * This library is open source and may be redistributed and/or modified under
 * the terms of the OpenSceneGraph Public License (OSGPL) version 0.0 or
 * (at your option) any later version.  The full license is in LICENSE file
 * included with this distribution, and on the openscenegraph.org website.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * OpenSceneGraph Public License for more details.
*/

#ifndef OSG_MATRIXF
#define OSG_MATRIXF 1

#include <osg/Object>
#include <osg/Vec3d>
#include <osg/Vec4d>
#include <osg/Quat>

namespace osg {

class Matrixf;

class OSG_EXPORT Matrixf
{
    public:

        typedef float value_type;
        typedef double other_value_type;

        inline Matrixf() { makeIdentity(); }
        inline Matrixf( const Matrixf& mat) { set(mat.ptr()); }
        Matrixf( const Matrixd& mat );
        inline explicit Matrixf( float const * const ptr ) { set(ptr); }
        inline explicit Matrixf( double const * const ptr ) { set(ptr); }
        inline explicit Matrixf( const Quat& quat ) { makeRotate(quat); }

        Matrixf( value_type a00, value_type a01, value_type a02, value_type a03,
                 value_type a10, value_type a11, value_type a12, value_type a13,
                 value_type a20, value_type a21, value_type a22, value_type a23,
                 value_type a30, value_type a31, value_type a32, value_type a33);

        ~Matrixf() {}

        int compare(const Matrixf& m) const;

        bool operator < (const Matrixf& m) const { return compare(m)<0; }
        bool operator == (const Matrixf& m) const { return compare(m)==0; }
        bool operator != (const Matrixf& m) const { return compare(m)!=0; }

        inline value_type& operator()(int row, int col) { return _mat[row][col]; }
        inline value_type operator()(int row, int col) const { return _mat[row][col]; }

        inline bool valid() const { return !isNaN(); }
        inline bool isNaN() const { return osg::isNaN(_mat[0][0]) || osg::isNaN(_mat[0][1]) || osg::isNaN(_mat[0][2]) || osg::isNaN(_mat[0][3]) ||
                                                 osg::isNaN(_mat[1][0]) || osg::isNaN(_mat[1][1]) || osg::isNaN(_mat[1][2]) || osg::isNaN(_mat[1][3]) ||
                                                 osg::isNaN(_mat[2][0]) || osg::isNaN(_mat[2][1]) || osg::isNaN(_mat[2][2]) || osg::isNaN(_mat[2][3]) ||
                                                 osg::isNaN(_mat[3][0]) || osg::isNaN(_mat[3][1]) || osg::isNaN(_mat[3][2]) || osg::isNaN(_mat[3][3]); }

        inline Matrixf& operator = (const Matrixf& rhs)
        {
            if( &rhs == this ) return *this;
            set(rhs.ptr());
            return *this;
        }

        Matrixf& operator = (const Matrixd& other);

        inline void set(const Matrixf& rhs) { set(rhs.ptr()); }

        void set(const Matrixd& rhs);

        inline void set(float const * const ptr)
        {
            value_type* local_ptr = (value_type*)_mat;
            for(int i=0;i<16;++i) local_ptr[i]=(value_type)ptr[i];
        }

        inline void set(double const * const ptr)
        {
            value_type* local_ptr = (value_type*)_mat;
            for(int i=0;i<16;++i) local_ptr[i]=(value_type)ptr[i];
        }

        void set(value_type a00, value_type a01, value_type a02,value_type a03,
                 value_type a10, value_type a11, value_type a12,value_type a13,
                 value_type a20, value_type a21, value_type a22,value_type a23,
                 value_type a30, value_type a31, value_type a32,value_type a33);

        value_type * ptr() { return (value_type*)_mat; }
        const value_type * ptr() const { return (const value_type *)_mat; }

        bool isIdentity() const
        {
            return _mat[0][0]==1.0f && _mat[0][1]==0.0f && _mat[0][2]==0.0f &&  _mat[0][3]==0.0f &&
                   _mat[1][0]==0.0f && _mat[1][1]==1.0f && _mat[1][2]==0.0f &&  _mat[1][3]==0.0f &&
                   _mat[2][0]==0.0f && _mat[2][1]==0.0f && _mat[2][2]==1.0f &&  _mat[2][3]==0.0f &&
                   _mat[3][0]==0.0f && _mat[3][1]==0.0f && _mat[3][2]==0.0f &&  _mat[3][3]==1.0f;
        }

        void makeIdentity();

        void makeScale( const Vec3f& );
        void makeScale( const Vec3d& );
        void makeScale( value_type, value_type, value_type );

        void makeTranslate( const Vec3f& );
        void makeTranslate( const Vec3d& );
        void makeTranslate( value_type, value_type, value_type );

        void makeRotate( const Vec3f& from, const Vec3f& to );
        void makeRotate( const Vec3d& from, const Vec3d& to );
        void makeRotate( value_type angle, const Vec3f& axis );
        void makeRotate( value_type angle, const Vec3d& axis );
        void makeRotate( value_type angle, value_type x, value_type y, value_type z );
        void makeRotate( const Quat& );
        void makeRotate( value_type angle1, const Vec3f& axis1,
                         value_type angle2, const Vec3f& axis2,
                         value_type angle3, const Vec3f& axis3);
        void makeRotate( value_type angle1, const Vec3d& axis1,
                         value_type angle2, const Vec3d& axis2,
                         value_type angle3, const Vec3d& axis3);


        /** decompose the matrix into translation, rotation, scale and scale orientation.*/
        void decompose( osg::Vec3f& translation,
                        osg::Quat& rotation,
                        osg::Vec3f& scale,
                        osg::Quat& so ) const;

        /** decompose the matrix into translation, rotation, scale and scale orientation.*/
        void decompose( osg::Vec3d& translation,
                        osg::Quat& rotation,
                        osg::Vec3d& scale,
                        osg::Quat& so ) const;


        /** Set to an orthographic projection.
         * See glOrtho for further details.
        */
        void makeOrtho(double left,   double right,
                       double bottom, double top,
                       double zNear,  double zFar);

        /** Get the orthographic settings of the orthographic projection matrix.
          * Note, if matrix is not an orthographic matrix then invalid values
          * will be returned.
        */
        bool getOrtho(double& left,   double& right,
                      double& bottom, double& top,
                      double& zNear,  double& zFar) const;

        /** float version of getOrtho(..) */
        bool getOrtho(float& left,   float& right,
                      float& bottom, float& top,
                      float& zNear,  float& zFar) const;


        /** Set to a 2D orthographic projection.
          * See glOrtho2D for further details.
        */
        inline void makeOrtho2D(double left,   double right,
                                double bottom, double top)
        {
            makeOrtho(left,right,bottom,top,-1.0,1.0);
        }


        /** Set to a perspective projection.
          * See glFrustum for further details.
        */
        void makeFrustum(double left,   double right,
                         double bottom, double top,
                         double zNear,  double zFar);

        /** Get the frustum settings of a perspective projection matrix.
          * Note, if matrix is not a perspective matrix then invalid values
          * will be returned.
        */
        bool getFrustum(double& left,   double& right,
                        double& bottom, double& top,
                        double& zNear,  double& zFar) const;

        /** float version of getFrustum(..) */
        bool getFrustum(float& left,   float& right,
                        float& bottom, float& top,
                        float& zNear,  float& zFar) const;

        /** Set to a symmetrical perspective projection.
          * See gluPerspective for further details.
          * Aspect ratio is defined as width/height.
        */
        void makePerspective(double fovy,  double aspectRatio,
                             double zNear, double zFar);

        /** Get the frustum settings of a symmetric perspective projection
          * matrix.
          * Return false if matrix is not a perspective matrix,
          * where parameter values are undefined.
          * Note, if matrix is not a symmetric perspective matrix then the
          * shear will be lost.
          * Asymmetric matrices occur when stereo, power walls, caves and
          * reality center display are used.
          * In these configuration one should use the AsFrustum method instead.
        */
        bool getPerspective(double& fovy,  double& aspectRatio,
                            double& zNear, double& zFar) const;

        /** float version of getPerspective(..) */
        bool getPerspective(float& fovy,  float& aspectRatio,
                            float& zNear, float& zFar) const;

        /** Set the position and orientation to be a view matrix,
          * using the same convention as gluLookAt.
        */
        void makeLookAt(const Vec3d& eye,const Vec3d& center,const Vec3d& up);

        /** Get to the position and orientation of a modelview matrix,
          * using the same convention as gluLookAt.
        */
        void getLookAt(Vec3f& eye,Vec3f& center,Vec3f& up,
                       value_type lookDistance=1.0f) const;

        /** Get to the position and orientation of a modelview matrix,
          * using the same convention as gluLookAt.
        */
        void getLookAt(Vec3d& eye,Vec3d& center,Vec3d& up,
                       value_type lookDistance=1.0f) const;

        /** invert the matrix rhs, automatically select invert_4x3 or invert_4x4. */
        inline bool invert( const Matrixf& rhs)
        {
            bool is_4x3 = (rhs._mat[0][3]==0.0f && rhs._mat[1][3]==0.0f &&  rhs._mat[2][3]==0.0f && rhs._mat[3][3]==1.0f);
            return is_4x3 ? invert_4x3(rhs) :  invert_4x4(rhs);
        }

        /** 4x3 matrix invert, not right hand column is assumed to be 0,0,0,1. */
        bool invert_4x3( const Matrixf& rhs);

        /** full 4x4 matrix invert. */
        bool invert_4x4( const Matrixf& rhs);

        /** ortho-normalize the 3x3 rotation & scale matrix */
        void orthoNormalize(const Matrixf& rhs);

        //basic utility functions to create new matrices
        inline static Matrixf identity( void );
        inline static Matrixf scale( const Vec3f& sv);
        inline static Matrixf scale( const Vec3d& sv);
        inline static Matrixf scale( value_type sx, value_type sy, value_type sz);
        inline static Matrixf translate( const Vec3f& dv);
        inline static Matrixf translate( const Vec3d& dv);
        inline static Matrixf translate( value_type x, value_type y, value_type z);
        inline static Matrixf rotate( const Vec3f& from, const Vec3f& to);
        inline static Matrixf rotate( const Vec3d& from, const Vec3d& to);
        inline static Matrixf rotate( value_type angle, value_type x, value_type y, value_type z);
        inline static Matrixf rotate( value_type angle, const Vec3f& axis);
        inline static Matrixf rotate( value_type angle, const Vec3d& axis);
        inline static Matrixf rotate( value_type angle1, const Vec3f& axis1,
                                      value_type angle2, const Vec3f& axis2,
                                      value_type angle3, const Vec3f& axis3);
        inline static Matrixf rotate( value_type angle1, const Vec3d& axis1,
                                      value_type angle2, const Vec3d& axis2,
                                      value_type angle3, const Vec3d& axis3);
        inline static Matrixf rotate( const Quat& quat);
        inline static Matrixf inverse( const Matrixf& matrix);
        inline static Matrixf orthoNormal(const Matrixf& matrix);

        /** Create an orthographic projection matrix.
          * See glOrtho for further details.
        */
        inline static Matrixf ortho(double left,   double right,
                                    double bottom, double top,
                                    double zNear,  double zFar);

        /** Create a 2D orthographic projection.
          * See glOrtho for further details.
        */
        inline static Matrixf ortho2D(double left,   double right,
                                      double bottom, double top);

        /** Create a perspective projection.
          * See glFrustum for further details.
        */
        inline static Matrixf frustum(double left,   double right,
                                      double bottom, double top,
                                      double zNear,  double zFar);

        /** Create a symmetrical perspective projection.
          * See gluPerspective for further details.
          * Aspect ratio is defined as width/height.
        */
        inline static Matrixf perspective(double fovy,  double aspectRatio,
                                          double zNear, double zFar);

        /** Create the position and orientation as per a camera,
          * using the same convention as gluLookAt.
        */
        inline static Matrixf lookAt(const Vec3f& eye,
                                     const Vec3f& center,
                                     const Vec3f& up);

        /** Create the position and orientation as per a camera,
          * using the same convention as gluLookAt.
        */
        inline static Matrixf lookAt(const Vec3d& eye,
                                     const Vec3d& center,
                                     const Vec3d& up);

        inline Vec3f preMult( const Vec3f& v ) const;
        inline Vec3d preMult( const Vec3d& v ) const;
        inline Vec3f postMult( const Vec3f& v ) const;
        inline Vec3d postMult( const Vec3d& v ) const;
        inline Vec3f operator* ( const Vec3f& v ) const;
        inline Vec3d operator* ( const Vec3d& v ) const;
        inline Vec4f preMult( const Vec4f& v ) const;
        inline Vec4d preMult( const Vec4d& v ) const;
        inline Vec4f postMult( const Vec4f& v ) const;
        inline Vec4d postMult( const Vec4d& v ) const;
        inline Vec4f operator* ( const Vec4f& v ) const;
        inline Vec4d operator* ( const Vec4d& v ) const;

#ifdef USE_DEPRECATED_API
        inline void set(const Quat& q) { makeRotate(q); }
        inline void get(Quat& q) const { q = getRotate(); }
#endif

        void setRotate(const Quat& q);
        /** Get the matrix rotation as a Quat. Note that this function
          * assumes a non-scaled matrix and will return incorrect results
          * for scaled matrixces. Consider decompose() instead.
          */
        Quat getRotate() const;


        void setTrans( value_type tx, value_type ty, value_type tz );
        void setTrans( const Vec3f& v );
        void setTrans( const Vec3d& v );

        inline Vec3d getTrans() const { return Vec3d(_mat[3][0],_mat[3][1],_mat[3][2]); }

        inline Vec3d getScale() const {
          Vec3d x_vec(_mat[0][0],_mat[1][0],_mat[2][0]);
          Vec3d y_vec(_mat[0][1],_mat[1][1],_mat[2][1]);
          Vec3d z_vec(_mat[0][2],_mat[1][2],_mat[2][2]);
          return Vec3d(x_vec.length(), y_vec.length(), z_vec.length());
        }

        /** apply a 3x3 transform of v*M[0..2,0..2]. */
        inline static Vec3f transform3x3(const Vec3f& v,const Matrixf& m);

        /** apply a 3x3 transform of v*M[0..2,0..2]. */
        inline static Vec3d transform3x3(const Vec3d& v,const Matrixf& m);

        /** apply a 3x3 transform of M[0..2,0..2]*v. */
        inline static Vec3f transform3x3(const Matrixf& m,const Vec3f& v);

        /** apply a 3x3 transform of M[0..2,0..2]*v. */
        inline static Vec3d transform3x3(const Matrixf& m,const Vec3d& v);

        // basic Matrixf multiplication, our workhorse methods.
        void mult( const Matrixf&, const Matrixf& );
        void preMult( const Matrixf& );
        void postMult( const Matrixf& );

        /** Optimized version of preMult(translate(v)); */
        inline void preMultTranslate( const Vec3d& v );
        inline void preMultTranslate( const Vec3f& v );
        /** Optimized version of postMult(translate(v)); */
        inline void postMultTranslate( const Vec3d& v );
        inline void postMultTranslate( const Vec3f& v );

        /** Optimized version of preMult(scale(v)); */
        inline void preMultScale( const Vec3d& v );
        inline void preMultScale( const Vec3f& v );
        /** Optimized version of postMult(scale(v)); */
        inline void postMultScale( const Vec3d& v );
        inline void postMultScale( const Vec3f& v );

        /** Optimized version of preMult(rotate(q)); */
        inline void preMultRotate( const Quat& q );
        /** Optimized version of postMult(rotate(q)); */
        inline void postMultRotate( const Quat& q );

        inline void operator *= ( const Matrixf& other )
        {    if( this == &other ) {
                Matrixf temp(other);
                postMult( temp );
            }
            else postMult( other );
        }

        inline Matrixf operator * ( const Matrixf &m ) const
        {
            osg::Matrixf r;
            r.mult(*this,m);
            return  r;
        }

        /** Multiply by scalar. */
        inline Matrixf operator * (value_type rhs) const
        {
            return Matrixf(
                _mat[0][0]*rhs, _mat[0][1]*rhs, _mat[0][2]*rhs, _mat[0][3]*rhs,
                _mat[1][0]*rhs, _mat[1][1]*rhs, _mat[1][2]*rhs, _mat[1][3]*rhs,
                _mat[2][0]*rhs, _mat[2][1]*rhs, _mat[2][2]*rhs, _mat[2][3]*rhs,
                _mat[3][0]*rhs, _mat[3][1]*rhs, _mat[3][2]*rhs, _mat[3][3]*rhs);
        }

        /** Unary multiply by scalar. */
        inline Matrixf& operator *= (value_type rhs)
        {
            _mat[0][0]*=rhs;
            _mat[0][1]*=rhs;
            _mat[0][2]*=rhs;
            _mat[0][3]*=rhs;
            _mat[1][0]*=rhs;
            _mat[1][1]*=rhs;
            _mat[1][2]*=rhs;
            _mat[1][3]*=rhs;
            _mat[2][0]*=rhs;
            _mat[2][1]*=rhs;
            _mat[2][2]*=rhs;
            _mat[2][3]*=rhs;
            _mat[3][0]*=rhs;
            _mat[3][1]*=rhs;
            _mat[3][2]*=rhs;
            _mat[3][3]*=rhs;
            return *this;
        }

        /** Divide by scalar. */
        inline Matrixf operator / (value_type rhs) const
        {
            return Matrixf(
                _mat[0][0]/rhs, _mat[0][1]/rhs, _mat[0][2]/rhs, _mat[0][3]/rhs,
                _mat[1][0]/rhs, _mat[1][1]/rhs, _mat[1][2]/rhs, _mat[1][3]/rhs,
                _mat[2][0]/rhs, _mat[2][1]/rhs, _mat[2][2]/rhs, _mat[2][3]/rhs,
                _mat[3][0]/rhs, _mat[3][1]/rhs, _mat[3][2]/rhs, _mat[3][3]/rhs);
        }

        /** Unary divide by scalar. */
        inline Matrixf& operator /= (value_type rhs)
        {
            _mat[0][0]/=rhs;
            _mat[0][1]/=rhs;
            _mat[0][2]/=rhs;
            _mat[0][3]/=rhs;
            _mat[1][0]/=rhs;
            _mat[1][1]/=rhs;
            _mat[1][2]/=rhs;
            _mat[1][3]/=rhs;
            _mat[2][0]/=rhs;
            _mat[2][1]/=rhs;
            _mat[2][2]/=rhs;
            _mat[2][3]/=rhs;
            _mat[3][0]/=rhs;
            _mat[3][1]/=rhs;
            _mat[3][2]/=rhs;
            _mat[3][3]/=rhs;
            return *this;
        }

        /** Binary vector add. */
        inline Matrixf operator + (const Matrixf& rhs) const
        {
            return Matrixf(
                _mat[0][0] + rhs._mat[0][0],
                _mat[0][1] + rhs._mat[0][1],
                _mat[0][2] + rhs._mat[0][2],
                _mat[0][3] + rhs._mat[0][3],
                _mat[1][0] + rhs._mat[1][0],
                _mat[1][1] + rhs._mat[1][1],
                _mat[1][2] + rhs._mat[1][2],
                _mat[1][3] + rhs._mat[1][3],
                _mat[2][0] + rhs._mat[2][0],
                _mat[2][1] + rhs._mat[2][1],
                _mat[2][2] + rhs._mat[2][2],
                _mat[2][3] + rhs._mat[2][3],
                _mat[3][0] + rhs._mat[3][0],
                _mat[3][1] + rhs._mat[3][1],
                _mat[3][2] + rhs._mat[3][2],
                _mat[3][3] + rhs._mat[3][3]);
        }

        /** Unary vector add. Slightly more efficient because no temporary
        * intermediate object.
        */
        inline Matrixf& operator += (const Matrixf& rhs)
        {
            _mat[0][0] += rhs._mat[0][0];
            _mat[0][1] += rhs._mat[0][1];
            _mat[0][2] += rhs._mat[0][2];
            _mat[0][3] += rhs._mat[0][3];
            _mat[1][0] += rhs._mat[1][0];
            _mat[1][1] += rhs._mat[1][1];
            _mat[1][2] += rhs._mat[1][2];
            _mat[1][3] += rhs._mat[1][3];
            _mat[2][0] += rhs._mat[2][0];
            _mat[2][1] += rhs._mat[2][1];
            _mat[2][2] += rhs._mat[2][2];
            _mat[2][3] += rhs._mat[2][3];
            _mat[3][0] += rhs._mat[3][0];
            _mat[3][1] += rhs._mat[3][1];
            _mat[3][2] += rhs._mat[3][2];
            _mat[3][3] += rhs._mat[3][3];
            return *this;
        }

    protected:
        value_type _mat[4][4];

};

class RefMatrixf : public Object, public Matrixf
{
    public:

        RefMatrixf():Object(false), Matrixf() {}
        RefMatrixf( const Matrixf& other) : Object(false), Matrixf(other) {}
        RefMatrixf( const Matrixd& other) : Object(false), Matrixf(other) {}
        RefMatrixf( const RefMatrixf& other) : Object(other), Matrixf(other) {}
        explicit RefMatrixf( Matrixf::value_type const * const def ):Object(false), Matrixf(def) {}
        RefMatrixf( Matrixf::value_type a00, Matrixf::value_type a01, Matrixf::value_type a02, Matrixf::value_type a03,
            Matrixf::value_type a10, Matrixf::value_type a11, Matrixf::value_type a12, Matrixf::value_type a13,
            Matrixf::value_type a20, Matrixf::value_type a21, Matrixf::value_type a22, Matrixf::value_type a23,
            Matrixf::value_type a30, Matrixf::value_type a31, Matrixf::value_type a32, Matrixf::value_type a33):
            Object(false),
            Matrixf(a00, a01, a02, a03,
                   a10, a11, a12, a13,
                   a20, a21, a22, a23,
                   a30, a31, a32, a33) {}

        virtual Object* cloneType() const { return new RefMatrixf(); }
        virtual Object* clone(const CopyOp&) const { return new RefMatrixf(*this); }
        virtual bool isSameKindAs(const Object* obj) const { return dynamic_cast<const RefMatrixf*>(obj)!=NULL; }
        virtual const char* libraryName() const { return "osg"; }
        virtual const char* className() const { return "Matrix"; }


    protected:

        virtual ~RefMatrixf() {}
};


//static utility methods
inline Matrixf Matrixf::identity(void)
{
    Matrixf m;
    m.makeIdentity();
    return m;
}

inline Matrixf Matrixf::scale(value_type sx, value_type sy, value_type sz)
{
    Matrixf m;
    m.makeScale(sx,sy,sz);
    return m;
}

inline Matrixf Matrixf::scale(const Vec3f& v )
{
    return scale(v.x(), v.y(), v.z() );
}

inline Matrixf Matrixf::scale(const Vec3d& v )
{
    return scale(v.x(), v.y(), v.z() );
}

inline Matrixf Matrixf::translate(value_type tx, value_type ty, value_type tz)
{
    Matrixf m;
    m.makeTranslate(tx,ty,tz);
    return m;
}

inline Matrixf Matrixf::translate(const Vec3f& v )
{
    return translate(v.x(), v.y(), v.z() );
}

inline Matrixf Matrixf::translate(const Vec3d& v )
{
    return translate(v.x(), v.y(), v.z() );
}

inline Matrixf Matrixf::rotate( const Quat& q )
{
    return Matrixf(q);
}
inline Matrixf Matrixf::rotate(value_type angle, value_type x, value_type y, value_type z )
{
    Matrixf m;
    m.makeRotate(angle,x,y,z);
    return m;
}
inline Matrixf Matrixf::rotate(value_type angle, const Vec3f& axis )
{
    Matrixf m;
    m.makeRotate(angle,axis);
    return m;
}
inline Matrixf Matrixf::rotate(value_type angle, const Vec3d& axis )
{
    Matrixf m;
    m.makeRotate(angle,axis);
    return m;
}
inline Matrixf Matrixf::rotate( value_type angle1, const Vec3f& axis1,
                              value_type angle2, const Vec3f& axis2,
                              value_type angle3, const Vec3f& axis3)
{
    Matrixf m;
    m.makeRotate(angle1,axis1,angle2,axis2,angle3,axis3);
    return m;
}
inline Matrixf Matrixf::rotate( value_type angle1, const Vec3d& axis1,
                              value_type angle2, const Vec3d& axis2,
                              value_type angle3, const Vec3d& axis3)
{
    Matrixf m;
    m.makeRotate(angle1,axis1,angle2,axis2,angle3,axis3);
    return m;
}
inline Matrixf Matrixf::rotate(const Vec3f& from, const Vec3f& to )
{
    Matrixf m;
    m.makeRotate(from,to);
    return m;
}
inline Matrixf Matrixf::rotate(const Vec3d& from, const Vec3d& to )
{
    Matrixf m;
    m.makeRotate(from,to);
    return m;
}

inline Matrixf Matrixf::inverse( const Matrixf& matrix)
{
    Matrixf m;
    m.invert(matrix);
    return m;
}

inline Matrixf Matrixf::orthoNormal(const Matrixf& matrix)
{
  Matrixf m;
  m.orthoNormalize(matrix);
  return m;
}

inline Matrixf Matrixf::ortho(double left, double right,
                            double bottom, double top,
                            double zNear, double zFar)
{
    Matrixf m;
    m.makeOrtho(left,right,bottom,top,zNear,zFar);
    return m;
}

inline Matrixf Matrixf::ortho2D(double left, double right,
                              double bottom, double top)
{
    Matrixf m;
    m.makeOrtho2D(left,right,bottom,top);
    return m;
}

inline Matrixf Matrixf::frustum(double left, double right,
                              double bottom, double top,
                              double zNear, double zFar)
{
    Matrixf m;
    m.makeFrustum(left,right,bottom,top,zNear,zFar);
    return m;
}

inline Matrixf Matrixf::perspective(double fovy,double aspectRatio,
                                  double zNear, double zFar)
{
    Matrixf m;
    m.makePerspective(fovy,aspectRatio,zNear,zFar);
    return m;
}

inline Matrixf Matrixf::lookAt(const Vec3f& eye,const Vec3f& center,const Vec3f& up)
{
    Matrixf m;
    m.makeLookAt(eye,center,up);
    return m;
}

inline Matrixf Matrixf::lookAt(const Vec3d& eye,const Vec3d& center,const Vec3d& up)
{
    Matrixf m;
    m.makeLookAt(eye,center,up);
    return m;
}

inline Vec3f Matrixf::postMult( const Vec3f& v ) const
{
    value_type d = 1.0f/(_mat[3][0]*v.x()+_mat[3][1]*v.y()+_mat[3][2]*v.z()+_mat[3][3]) ;
    return Vec3f( (_mat[0][0]*v.x() + _mat[0][1]*v.y() + _mat[0][2]*v.z() + _mat[0][3])*d,
        (_mat[1][0]*v.x() + _mat[1][1]*v.y() + _mat[1][2]*v.z() + _mat[1][3])*d,
        (_mat[2][0]*v.x() + _mat[2][1]*v.y() + _mat[2][2]*v.z() + _mat[2][3])*d) ;
}
inline Vec3d Matrixf::postMult( const Vec3d& v ) const
{
    value_type d = 1.0f/(_mat[3][0]*v.x()+_mat[3][1]*v.y()+_mat[3][2]*v.z()+_mat[3][3]) ;
    return Vec3d( (_mat[0][0]*v.x() + _mat[0][1]*v.y() + _mat[0][2]*v.z() + _mat[0][3])*d,
        (_mat[1][0]*v.x() + _mat[1][1]*v.y() + _mat[1][2]*v.z() + _mat[1][3])*d,
        (_mat[2][0]*v.x() + _mat[2][1]*v.y() + _mat[2][2]*v.z() + _mat[2][3])*d) ;
}

inline Vec3f Matrixf::preMult( const Vec3f& v ) const
{
    value_type d = 1.0f/(_mat[0][3]*v.x()+_mat[1][3]*v.y()+_mat[2][3]*v.z()+_mat[3][3]) ;
    return Vec3f( (_mat[0][0]*v.x() + _mat[1][0]*v.y() + _mat[2][0]*v.z() + _mat[3][0])*d,
        (_mat[0][1]*v.x() + _mat[1][1]*v.y() + _mat[2][1]*v.z() + _mat[3][1])*d,
        (_mat[0][2]*v.x() + _mat[1][2]*v.y() + _mat[2][2]*v.z() + _mat[3][2])*d);
}
inline Vec3d Matrixf::preMult( const Vec3d& v ) const
{
    value_type d = 1.0f/(_mat[0][3]*v.x()+_mat[1][3]*v.y()+_mat[2][3]*v.z()+_mat[3][3]) ;
    return Vec3d( (_mat[0][0]*v.x() + _mat[1][0]*v.y() + _mat[2][0]*v.z() + _mat[3][0])*d,
        (_mat[0][1]*v.x() + _mat[1][1]*v.y() + _mat[2][1]*v.z() + _mat[3][1])*d,
        (_mat[0][2]*v.x() + _mat[1][2]*v.y() + _mat[2][2]*v.z() + _mat[3][2])*d);
}

inline Vec4f Matrixf::postMult( const Vec4f& v ) const
{
    return Vec4f( (_mat[0][0]*v.x() + _mat[0][1]*v.y() + _mat[0][2]*v.z() + _mat[0][3]*v.w()),
        (_mat[1][0]*v.x() + _mat[1][1]*v.y() + _mat[1][2]*v.z() + _mat[1][3]*v.w()),
        (_mat[2][0]*v.x() + _mat[2][1]*v.y() + _mat[2][2]*v.z() + _mat[2][3]*v.w()),
        (_mat[3][0]*v.x() + _mat[3][1]*v.y() + _mat[3][2]*v.z() + _mat[3][3]*v.w())) ;
}
inline Vec4d Matrixf::postMult( const Vec4d& v ) const
{
    return Vec4d( (_mat[0][0]*v.x() + _mat[0][1]*v.y() + _mat[0][2]*v.z() + _mat[0][3]*v.w()),
        (_mat[1][0]*v.x() + _mat[1][1]*v.y() + _mat[1][2]*v.z() + _mat[1][3]*v.w()),
        (_mat[2][0]*v.x() + _mat[2][1]*v.y() + _mat[2][2]*v.z() + _mat[2][3]*v.w()),
        (_mat[3][0]*v.x() + _mat[3][1]*v.y() + _mat[3][2]*v.z() + _mat[3][3]*v.w())) ;
}

inline Vec4f Matrixf::preMult( const Vec4f& v ) const
{
    return Vec4f( (_mat[0][0]*v.x() + _mat[1][0]*v.y() + _mat[2][0]*v.z() + _mat[3][0]*v.w()),
        (_mat[0][1]*v.x() + _mat[1][1]*v.y() + _mat[2][1]*v.z() + _mat[3][1]*v.w()),
        (_mat[0][2]*v.x() + _mat[1][2]*v.y() + _mat[2][2]*v.z() + _mat[3][2]*v.w()),
        (_mat[0][3]*v.x() + _mat[1][3]*v.y() + _mat[2][3]*v.z() + _mat[3][3]*v.w()));
}
inline Vec4d Matrixf::preMult( const Vec4d& v ) const
{
    return Vec4d( (_mat[0][0]*v.x() + _mat[1][0]*v.y() + _mat[2][0]*v.z() + _mat[3][0]*v.w()),
        (_mat[0][1]*v.x() + _mat[1][1]*v.y() + _mat[2][1]*v.z() + _mat[3][1]*v.w()),
        (_mat[0][2]*v.x() + _mat[1][2]*v.y() + _mat[2][2]*v.z() + _mat[3][2]*v.w()),
        (_mat[0][3]*v.x() + _mat[1][3]*v.y() + _mat[2][3]*v.z() + _mat[3][3]*v.w()));
}
inline Vec3f Matrixf::transform3x3(const Vec3f& v,const Matrixf& m)
{
    return Vec3f( (m._mat[0][0]*v.x() + m._mat[1][0]*v.y() + m._mat[2][0]*v.z()),
                 (m._mat[0][1]*v.x() + m._mat[1][1]*v.y() + m._mat[2][1]*v.z()),
                 (m._mat[0][2]*v.x() + m._mat[1][2]*v.y() + m._mat[2][2]*v.z()));
}
inline Vec3d Matrixf::transform3x3(const Vec3d& v,const Matrixf& m)
{
    return Vec3d( (m._mat[0][0]*v.x() + m._mat[1][0]*v.y() + m._mat[2][0]*v.z()),
                 (m._mat[0][1]*v.x() + m._mat[1][1]*v.y() + m._mat[2][1]*v.z()),
                 (m._mat[0][2]*v.x() + m._mat[1][2]*v.y() + m._mat[2][2]*v.z()));
}

inline Vec3f Matrixf::transform3x3(const Matrixf& m,const Vec3f& v)
{
    return Vec3f( (m._mat[0][0]*v.x() + m._mat[0][1]*v.y() + m._mat[0][2]*v.z()),
                 (m._mat[1][0]*v.x() + m._mat[1][1]*v.y() + m._mat[1][2]*v.z()),
                 (m._mat[2][0]*v.x() + m._mat[2][1]*v.y() + m._mat[2][2]*v.z()) ) ;
}
inline Vec3d Matrixf::transform3x3(const Matrixf& m,const Vec3d& v)
{
    return Vec3d( (m._mat[0][0]*v.x() + m._mat[0][1]*v.y() + m._mat[0][2]*v.z()),
                 (m._mat[1][0]*v.x() + m._mat[1][1]*v.y() + m._mat[1][2]*v.z()),
                 (m._mat[2][0]*v.x() + m._mat[2][1]*v.y() + m._mat[2][2]*v.z()) ) ;
}

inline void Matrixf::preMultTranslate( const Vec3d& v )
{
    for (unsigned i = 0; i < 3; ++i)
    {
        double tmp = v[i];
        if (tmp == 0)
            continue;
        _mat[3][0] += tmp*_mat[i][0];
        _mat[3][1] += tmp*_mat[i][1];
        _mat[3][2] += tmp*_mat[i][2];
        _mat[3][3] += tmp*_mat[i][3];
    }
}

inline void Matrixf::preMultTranslate( const Vec3f& v )
{
    for (unsigned i = 0; i < 3; ++i)
    {
        float tmp = v[i];
        if (tmp == 0)
            continue;
        _mat[3][0] += tmp*_mat[i][0];
        _mat[3][1] += tmp*_mat[i][1];
        _mat[3][2] += tmp*_mat[i][2];
        _mat[3][3] += tmp*_mat[i][3];
    }
}

inline void Matrixf::postMultTranslate( const Vec3d& v )
{
    for (unsigned i = 0; i < 3; ++i)
    {
        double tmp = v[i];
        if (tmp == 0)
            continue;
        _mat[0][i] += tmp*_mat[0][3];
        _mat[1][i] += tmp*_mat[1][3];
        _mat[2][i] += tmp*_mat[2][3];
        _mat[3][i] += tmp*_mat[3][3];
    }
}

inline void Matrixf::postMultTranslate( const Vec3f& v )
{
    for (unsigned i = 0; i < 3; ++i)
    {
        float tmp = v[i];
        if (tmp == 0)
            continue;
        _mat[0][i] += tmp*_mat[0][3];
        _mat[1][i] += tmp*_mat[1][3];
        _mat[2][i] += tmp*_mat[2][3];
        _mat[3][i] += tmp*_mat[3][3];
    }
}

inline void Matrixf::preMultScale( const Vec3d& v )
{
    _mat[0][0] *= v[0]; _mat[0][1] *= v[0]; _mat[0][2] *= v[0]; _mat[0][3] *= v[0];
    _mat[1][0] *= v[1]; _mat[1][1] *= v[1]; _mat[1][2] *= v[1]; _mat[1][3] *= v[1];
    _mat[2][0] *= v[2]; _mat[2][1] *= v[2]; _mat[2][2] *= v[2]; _mat[2][3] *= v[2];
}

inline void Matrixf::preMultScale( const Vec3f& v )
{
    _mat[0][0] *= v[0]; _mat[0][1] *= v[0]; _mat[0][2] *= v[0]; _mat[0][3] *= v[0];
    _mat[1][0] *= v[1]; _mat[1][1] *= v[1]; _mat[1][2] *= v[1]; _mat[1][3] *= v[1];
    _mat[2][0] *= v[2]; _mat[2][1] *= v[2]; _mat[2][2] *= v[2]; _mat[2][3] *= v[2];
}

inline void Matrixf::postMultScale( const Vec3d& v )
{
    _mat[0][0] *= v[0]; _mat[1][0] *= v[0]; _mat[2][0] *= v[0]; _mat[3][0] *= v[0];
    _mat[0][1] *= v[1]; _mat[1][1] *= v[1]; _mat[2][1] *= v[1]; _mat[3][1] *= v[1];
    _mat[0][2] *= v[2]; _mat[1][2] *= v[2]; _mat[2][2] *= v[2]; _mat[3][2] *= v[2];
}

inline void Matrixf::postMultScale( const Vec3f& v )
{
    _mat[0][0] *= v[0]; _mat[1][0] *= v[0]; _mat[2][0] *= v[0]; _mat[3][0] *= v[0];
    _mat[0][1] *= v[1]; _mat[1][1] *= v[1]; _mat[2][1] *= v[1]; _mat[3][1] *= v[1];
    _mat[0][2] *= v[2]; _mat[1][2] *= v[2]; _mat[2][2] *= v[2]; _mat[3][2] *= v[2];
}


inline void Matrixf::preMultRotate( const Quat& q )
{
    if (q.zeroRotation())
        return;
    Matrixf r;
    r.setRotate(q);
    preMult(r);
}

inline void Matrixf::postMultRotate( const Quat& q )
{
    if (q.zeroRotation())
        return;
    Matrixf r;
    r.setRotate(q);
    postMult(r);
}

inline Vec3f operator* (const Vec3f& v, const Matrixf& m )
{
    return m.preMult(v);
}
inline Vec3d operator* (const Vec3d& v, const Matrixf& m )
{
    return m.preMult(v);
}
inline Vec4f operator* (const Vec4f& v, const Matrixf& m )
{
    return m.preMult(v);
}
inline Vec4d operator* (const Vec4d& v, const Matrixf& m )
{
    return m.preMult(v);
}

inline Vec3f Matrixf::operator* (const Vec3f& v) const
{
    return postMult(v);
}
inline Vec3d Matrixf::operator* (const Vec3d& v) const
{
    return postMult(v);
}
inline Vec4f Matrixf::operator* (const Vec4f& v) const
{
    return postMult(v);
}
inline Vec4d Matrixf::operator* (const Vec4d& v) const
{
    return postMult(v);
}


} //namespace osg


#endif