This file is indexed.

/usr/include/osg/CoordinateSystemNode is in libopenscenegraph-dev 3.2.3+dfsg1-2ubuntu8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
/* -*-c++-*- OpenSceneGraph - Copyright (C) 1998-2006 Robert Osfield
 *
 * This library is open source and may be redistributed and/or modified under
 * the terms of the OpenSceneGraph Public License (OSGPL) version 0.0 or
 * (at your option) any later version.  The full license is in LICENSE file
 * included with this distribution, and on the openscenegraph.org website.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * OpenSceneGraph Public License for more details.
*/

#ifndef OSG_COORDINATESYSTEMNODE
#define OSG_COORDINATESYSTEMNODE 1

#include <osg/Group>
#include <osg/Matrixd>

namespace osg
{

const double WGS_84_RADIUS_EQUATOR = 6378137.0;
const double WGS_84_RADIUS_POLAR = 6356752.3142;

/** EllipsoidModel encapsulates the ellipsoid used to model astronomical bodies,
 * such as sun, planets, moon etc.
 * All distance quantities (i.e. heights + radius) are in meters,
 * and latitude and longitude are in radians.*/
class EllipsoidModel : public Object
{
    public:

        /** WGS_84 is a common representation of the earth's spheroid */
        EllipsoidModel(double radiusEquator = WGS_84_RADIUS_EQUATOR,
                       double radiusPolar = WGS_84_RADIUS_POLAR):
            _radiusEquator(radiusEquator),
            _radiusPolar(radiusPolar) { computeCoefficients(); }

        EllipsoidModel(const EllipsoidModel& et,const CopyOp& copyop=CopyOp::SHALLOW_COPY):
            Object(et,copyop),
            _radiusEquator(et._radiusEquator),
            _radiusPolar(et._radiusPolar) { computeCoefficients(); }

        META_Object(osg,EllipsoidModel);

        void setRadiusEquator(double radius) { _radiusEquator = radius; computeCoefficients(); }
        double getRadiusEquator() const { return _radiusEquator; }

        void setRadiusPolar(double radius) { _radiusPolar = radius; computeCoefficients(); }
        double getRadiusPolar() const { return _radiusPolar; }

        inline void convertLatLongHeightToXYZ(double latitude, double longitude, double height,
                                              double& X, double& Y, double& Z) const;

        inline void convertXYZToLatLongHeight(double X, double Y, double Z,
                                              double& latitude, double& longitude, double& height) const;

        inline void computeLocalToWorldTransformFromLatLongHeight(double latitude, double longitude, double height, osg::Matrixd& localToWorld) const;

        inline void computeLocalToWorldTransformFromXYZ(double X, double Y, double Z, osg::Matrixd& localToWorld) const;

        inline void computeCoordinateFrame(double latitude, double longitude, osg::Matrixd& localToWorld) const;

        inline osg::Vec3d computeLocalUpVector(double X, double Y, double Z) const;

        // Convenience method for determining if EllipsoidModel is a stock WGS84 ellipsoid
        inline bool isWGS84() const {return(_radiusEquator == WGS_84_RADIUS_EQUATOR && _radiusPolar == WGS_84_RADIUS_POLAR);}

        // Compares two EllipsoidModel by comparing critical internal values.
        // Ignores _eccentricitySquared since it's just a cached value derived from
        // the _radiusEquator and _radiusPolar members.
        friend bool operator == ( const EllipsoidModel & e1, const EllipsoidModel& e2) {return(e1._radiusEquator == e2._radiusEquator && e1._radiusPolar == e2._radiusPolar);}


    protected:

        void computeCoefficients()
        {
            double flattening = (_radiusEquator-_radiusPolar)/_radiusEquator;
            _eccentricitySquared = 2*flattening - flattening*flattening;
        }

        double _radiusEquator;
        double _radiusPolar;
        double _eccentricitySquared;

};

/** CoordinateFrame encapsulates the orientation of east, north and up.*/
typedef Matrixd CoordinateFrame;

/** CoordinateSystem encapsulate the coordinate system that is associated with objects in a scene.
    For an overview of common earth bases coordinate systems see http://www.colorado.edu/geography/gcraft/notes/coordsys/coordsys_f.html */
class OSG_EXPORT CoordinateSystemNode : public Group
{
    public:

        CoordinateSystemNode();

        CoordinateSystemNode(const std::string& format, const std::string& cs);

        /** Copy constructor using CopyOp to manage deep vs shallow copy.*/
        CoordinateSystemNode(const CoordinateSystemNode&,const osg::CopyOp& copyop=osg::CopyOp::SHALLOW_COPY);

        META_Node(osg,CoordinateSystemNode);


        /** Set the coordinate system node up by copying the format, coordinate system string, and ellipsoid model of another coordinate system node.*/
        void set(const CoordinateSystemNode& csn);

        /** Set the coordinate system format string. Typical values would be WKT, PROJ4, USGS etc.*/
        void setFormat(const std::string& format) { _format = format; }

        /** Get the coordinate system format string.*/
        const std::string& getFormat() const { return _format; }

        /** Set the CoordinateSystem reference string, should be stored in a form consistent with the Format.*/
        void setCoordinateSystem(const std::string& cs) { _cs = cs; }

        /** Get the CoordinateSystem reference string.*/
        const std::string& getCoordinateSystem() const { return _cs; }


        /** Set EllipsoidModel to describe the model used to map lat, long and height into geocentric XYZ and back. */
        void setEllipsoidModel(EllipsoidModel* ellipsode) { _ellipsoidModel = ellipsode; }

        /** Get the EllipsoidModel.*/
        EllipsoidModel* getEllipsoidModel() { return _ellipsoidModel.get(); }

        /** Get the const EllipsoidModel.*/
        const EllipsoidModel* getEllipsoidModel() const { return _ellipsoidModel.get(); }

        /** Compute the local coordinate frame for specified point.*/
        CoordinateFrame computeLocalCoordinateFrame(const Vec3d& position) const;

        /** Compute the local up-vector for specified point.*/
        osg::Vec3d computeLocalUpVector(const Vec3d& position) const;

    protected:

        virtual ~CoordinateSystemNode() {}

        std::string             _format;
        std::string             _cs;
        ref_ptr<EllipsoidModel> _ellipsoidModel;

};



////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// implement inline methods.
//
inline void EllipsoidModel::convertLatLongHeightToXYZ(double latitude, double longitude, double height,
                                      double& X, double& Y, double& Z) const
{
    // for details on maths see http://www.colorado.edu/geography/gcraft/notes/datum/gif/llhxyz.gif
    double sin_latitude = sin(latitude);
    double cos_latitude = cos(latitude);
    double N = _radiusEquator / sqrt( 1.0 - _eccentricitySquared*sin_latitude*sin_latitude);
    X = (N+height)*cos_latitude*cos(longitude);
    Y = (N+height)*cos_latitude*sin(longitude);
    Z = (N*(1-_eccentricitySquared)+height)*sin_latitude;
}


inline void EllipsoidModel::convertXYZToLatLongHeight(double X, double Y, double Z,
                                      double& latitude, double& longitude, double& height) const
{
    // http://www.colorado.edu/geography/gcraft/notes/datum/gif/xyzllh.gif
    double p = sqrt(X*X + Y*Y);
    double theta = atan2(Z*_radiusEquator , (p*_radiusPolar));
    double eDashSquared = (_radiusEquator*_radiusEquator - _radiusPolar*_radiusPolar)/
                          (_radiusPolar*_radiusPolar);

    double sin_theta = sin(theta);
    double cos_theta = cos(theta);

    latitude = atan( (Z + eDashSquared*_radiusPolar*sin_theta*sin_theta*sin_theta) /
                     (p - _eccentricitySquared*_radiusEquator*cos_theta*cos_theta*cos_theta) );
    longitude = atan2(Y,X);

    double sin_latitude = sin(latitude);
    double N = _radiusEquator / sqrt( 1.0 - _eccentricitySquared*sin_latitude*sin_latitude);

    height = p/cos(latitude) - N;
}

inline void EllipsoidModel::computeLocalToWorldTransformFromLatLongHeight(double latitude, double longitude, double height, osg::Matrixd& localToWorld) const
{
    double X, Y, Z;
    convertLatLongHeightToXYZ(latitude,longitude,height,X,Y,Z);

    localToWorld.makeTranslate(X,Y,Z);
    computeCoordinateFrame(latitude, longitude, localToWorld);
}

inline void EllipsoidModel::computeLocalToWorldTransformFromXYZ(double X, double Y, double Z, osg::Matrixd& localToWorld) const
{
    double  latitude, longitude, height;
    convertXYZToLatLongHeight(X,Y,Z,latitude,longitude,height);

    localToWorld.makeTranslate(X,Y,Z);
    computeCoordinateFrame(latitude, longitude, localToWorld);
}

inline void EllipsoidModel::computeCoordinateFrame(double latitude, double longitude, osg::Matrixd& localToWorld) const
{
    // Compute up vector
    osg::Vec3d    up      ( cos(longitude)*cos(latitude), sin(longitude)*cos(latitude), sin(latitude));

    // Compute east vector
    osg::Vec3d    east    (-sin(longitude), cos(longitude), 0);

    // Compute north vector = outer product up x east
    osg::Vec3d    north   = up ^ east;

    // set matrix
    localToWorld(0,0) = east[0];
    localToWorld(0,1) = east[1];
    localToWorld(0,2) = east[2];

    localToWorld(1,0) = north[0];
    localToWorld(1,1) = north[1];
    localToWorld(1,2) = north[2];

    localToWorld(2,0) = up[0];
    localToWorld(2,1) = up[1];
    localToWorld(2,2) = up[2];
}

inline osg::Vec3d EllipsoidModel::computeLocalUpVector(double X, double Y, double Z) const
{
    // Note latitude is angle between normal to ellipsoid surface and XY-plane
    double  latitude;
    double  longitude;
    double  altitude;
    convertXYZToLatLongHeight(X,Y,Z,latitude,longitude,altitude);

    // Compute up vector
    return osg::Vec3d(  cos(longitude) * cos(latitude),
                        sin(longitude) * cos(latitude),
                                         sin(latitude));
}

}
#endif