/usr/include/osg/CoordinateSystemNode is in libopenscenegraph-dev 3.2.3+dfsg1-2ubuntu8.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 | /* -*-c++-*- OpenSceneGraph - Copyright (C) 1998-2006 Robert Osfield
*
* This library is open source and may be redistributed and/or modified under
* the terms of the OpenSceneGraph Public License (OSGPL) version 0.0 or
* (at your option) any later version. The full license is in LICENSE file
* included with this distribution, and on the openscenegraph.org website.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* OpenSceneGraph Public License for more details.
*/
#ifndef OSG_COORDINATESYSTEMNODE
#define OSG_COORDINATESYSTEMNODE 1
#include <osg/Group>
#include <osg/Matrixd>
namespace osg
{
const double WGS_84_RADIUS_EQUATOR = 6378137.0;
const double WGS_84_RADIUS_POLAR = 6356752.3142;
/** EllipsoidModel encapsulates the ellipsoid used to model astronomical bodies,
* such as sun, planets, moon etc.
* All distance quantities (i.e. heights + radius) are in meters,
* and latitude and longitude are in radians.*/
class EllipsoidModel : public Object
{
public:
/** WGS_84 is a common representation of the earth's spheroid */
EllipsoidModel(double radiusEquator = WGS_84_RADIUS_EQUATOR,
double radiusPolar = WGS_84_RADIUS_POLAR):
_radiusEquator(radiusEquator),
_radiusPolar(radiusPolar) { computeCoefficients(); }
EllipsoidModel(const EllipsoidModel& et,const CopyOp& copyop=CopyOp::SHALLOW_COPY):
Object(et,copyop),
_radiusEquator(et._radiusEquator),
_radiusPolar(et._radiusPolar) { computeCoefficients(); }
META_Object(osg,EllipsoidModel);
void setRadiusEquator(double radius) { _radiusEquator = radius; computeCoefficients(); }
double getRadiusEquator() const { return _radiusEquator; }
void setRadiusPolar(double radius) { _radiusPolar = radius; computeCoefficients(); }
double getRadiusPolar() const { return _radiusPolar; }
inline void convertLatLongHeightToXYZ(double latitude, double longitude, double height,
double& X, double& Y, double& Z) const;
inline void convertXYZToLatLongHeight(double X, double Y, double Z,
double& latitude, double& longitude, double& height) const;
inline void computeLocalToWorldTransformFromLatLongHeight(double latitude, double longitude, double height, osg::Matrixd& localToWorld) const;
inline void computeLocalToWorldTransformFromXYZ(double X, double Y, double Z, osg::Matrixd& localToWorld) const;
inline void computeCoordinateFrame(double latitude, double longitude, osg::Matrixd& localToWorld) const;
inline osg::Vec3d computeLocalUpVector(double X, double Y, double Z) const;
// Convenience method for determining if EllipsoidModel is a stock WGS84 ellipsoid
inline bool isWGS84() const {return(_radiusEquator == WGS_84_RADIUS_EQUATOR && _radiusPolar == WGS_84_RADIUS_POLAR);}
// Compares two EllipsoidModel by comparing critical internal values.
// Ignores _eccentricitySquared since it's just a cached value derived from
// the _radiusEquator and _radiusPolar members.
friend bool operator == ( const EllipsoidModel & e1, const EllipsoidModel& e2) {return(e1._radiusEquator == e2._radiusEquator && e1._radiusPolar == e2._radiusPolar);}
protected:
void computeCoefficients()
{
double flattening = (_radiusEquator-_radiusPolar)/_radiusEquator;
_eccentricitySquared = 2*flattening - flattening*flattening;
}
double _radiusEquator;
double _radiusPolar;
double _eccentricitySquared;
};
/** CoordinateFrame encapsulates the orientation of east, north and up.*/
typedef Matrixd CoordinateFrame;
/** CoordinateSystem encapsulate the coordinate system that is associated with objects in a scene.
For an overview of common earth bases coordinate systems see http://www.colorado.edu/geography/gcraft/notes/coordsys/coordsys_f.html */
class OSG_EXPORT CoordinateSystemNode : public Group
{
public:
CoordinateSystemNode();
CoordinateSystemNode(const std::string& format, const std::string& cs);
/** Copy constructor using CopyOp to manage deep vs shallow copy.*/
CoordinateSystemNode(const CoordinateSystemNode&,const osg::CopyOp& copyop=osg::CopyOp::SHALLOW_COPY);
META_Node(osg,CoordinateSystemNode);
/** Set the coordinate system node up by copying the format, coordinate system string, and ellipsoid model of another coordinate system node.*/
void set(const CoordinateSystemNode& csn);
/** Set the coordinate system format string. Typical values would be WKT, PROJ4, USGS etc.*/
void setFormat(const std::string& format) { _format = format; }
/** Get the coordinate system format string.*/
const std::string& getFormat() const { return _format; }
/** Set the CoordinateSystem reference string, should be stored in a form consistent with the Format.*/
void setCoordinateSystem(const std::string& cs) { _cs = cs; }
/** Get the CoordinateSystem reference string.*/
const std::string& getCoordinateSystem() const { return _cs; }
/** Set EllipsoidModel to describe the model used to map lat, long and height into geocentric XYZ and back. */
void setEllipsoidModel(EllipsoidModel* ellipsode) { _ellipsoidModel = ellipsode; }
/** Get the EllipsoidModel.*/
EllipsoidModel* getEllipsoidModel() { return _ellipsoidModel.get(); }
/** Get the const EllipsoidModel.*/
const EllipsoidModel* getEllipsoidModel() const { return _ellipsoidModel.get(); }
/** Compute the local coordinate frame for specified point.*/
CoordinateFrame computeLocalCoordinateFrame(const Vec3d& position) const;
/** Compute the local up-vector for specified point.*/
osg::Vec3d computeLocalUpVector(const Vec3d& position) const;
protected:
virtual ~CoordinateSystemNode() {}
std::string _format;
std::string _cs;
ref_ptr<EllipsoidModel> _ellipsoidModel;
};
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// implement inline methods.
//
inline void EllipsoidModel::convertLatLongHeightToXYZ(double latitude, double longitude, double height,
double& X, double& Y, double& Z) const
{
// for details on maths see http://www.colorado.edu/geography/gcraft/notes/datum/gif/llhxyz.gif
double sin_latitude = sin(latitude);
double cos_latitude = cos(latitude);
double N = _radiusEquator / sqrt( 1.0 - _eccentricitySquared*sin_latitude*sin_latitude);
X = (N+height)*cos_latitude*cos(longitude);
Y = (N+height)*cos_latitude*sin(longitude);
Z = (N*(1-_eccentricitySquared)+height)*sin_latitude;
}
inline void EllipsoidModel::convertXYZToLatLongHeight(double X, double Y, double Z,
double& latitude, double& longitude, double& height) const
{
// http://www.colorado.edu/geography/gcraft/notes/datum/gif/xyzllh.gif
double p = sqrt(X*X + Y*Y);
double theta = atan2(Z*_radiusEquator , (p*_radiusPolar));
double eDashSquared = (_radiusEquator*_radiusEquator - _radiusPolar*_radiusPolar)/
(_radiusPolar*_radiusPolar);
double sin_theta = sin(theta);
double cos_theta = cos(theta);
latitude = atan( (Z + eDashSquared*_radiusPolar*sin_theta*sin_theta*sin_theta) /
(p - _eccentricitySquared*_radiusEquator*cos_theta*cos_theta*cos_theta) );
longitude = atan2(Y,X);
double sin_latitude = sin(latitude);
double N = _radiusEquator / sqrt( 1.0 - _eccentricitySquared*sin_latitude*sin_latitude);
height = p/cos(latitude) - N;
}
inline void EllipsoidModel::computeLocalToWorldTransformFromLatLongHeight(double latitude, double longitude, double height, osg::Matrixd& localToWorld) const
{
double X, Y, Z;
convertLatLongHeightToXYZ(latitude,longitude,height,X,Y,Z);
localToWorld.makeTranslate(X,Y,Z);
computeCoordinateFrame(latitude, longitude, localToWorld);
}
inline void EllipsoidModel::computeLocalToWorldTransformFromXYZ(double X, double Y, double Z, osg::Matrixd& localToWorld) const
{
double latitude, longitude, height;
convertXYZToLatLongHeight(X,Y,Z,latitude,longitude,height);
localToWorld.makeTranslate(X,Y,Z);
computeCoordinateFrame(latitude, longitude, localToWorld);
}
inline void EllipsoidModel::computeCoordinateFrame(double latitude, double longitude, osg::Matrixd& localToWorld) const
{
// Compute up vector
osg::Vec3d up ( cos(longitude)*cos(latitude), sin(longitude)*cos(latitude), sin(latitude));
// Compute east vector
osg::Vec3d east (-sin(longitude), cos(longitude), 0);
// Compute north vector = outer product up x east
osg::Vec3d north = up ^ east;
// set matrix
localToWorld(0,0) = east[0];
localToWorld(0,1) = east[1];
localToWorld(0,2) = east[2];
localToWorld(1,0) = north[0];
localToWorld(1,1) = north[1];
localToWorld(1,2) = north[2];
localToWorld(2,0) = up[0];
localToWorld(2,1) = up[1];
localToWorld(2,2) = up[2];
}
inline osg::Vec3d EllipsoidModel::computeLocalUpVector(double X, double Y, double Z) const
{
// Note latitude is angle between normal to ellipsoid surface and XY-plane
double latitude;
double longitude;
double altitude;
convertXYZToLatLongHeight(X,Y,Z,latitude,longitude,altitude);
// Compute up vector
return osg::Vec3d( cos(longitude) * cos(latitude),
sin(longitude) * cos(latitude),
sin(latitude));
}
}
#endif
|