/usr/include/OpenImageIO/ustring.h is in libopenimageio-dev 1.7.17~dfsg0-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 | /*
Copyright 2008 Larry Gritz and the other authors and contributors.
All Rights Reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the software's owners nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
(This is the Modified BSD License)
*/
/// \file
/// Define the ustring class, unique strings with efficient storage and
/// very fast copy and comparison.
/////////////////////////////////////////////////////////////////////////////
/// \class ustring
///
/// A ustring is an alternative to char* or std::string for storing
/// strings, in which the character sequence is unique (allowing many
/// speed advantages for assignment, equality testing, and inequality
/// testing).
///
/// The implementation is that behind the scenes there is a hash set of
/// allocated strings, so the characters of each string are unique. A
/// ustring itself is a pointer to the characters of one of these canonical
/// strings. Therefore, assignment and equality testing is just a single
/// 32- or 64-bit int operation, the only mutex is when a ustring is
/// created from raw characters, and the only malloc is the first time
/// each canonical ustring is created.
///
/// The internal table also contains a std::string version and the length
/// of the string, so converting a ustring to a std::string (via
/// ustring::string()) or querying the number of characters (via
/// ustring::size() or ustring::length()) is extremely inexpensive, and does
/// not involve creation/allocation of a new std::string or a call to
/// strlen.
///
/// We try very hard to completely mimic the API of std::string,
/// including all the constructors, comparisons, iterations, etc. Of
/// course, the charaters of a ustring are non-modifiable, so we do not
/// replicate any of the non-const methods of std::string. But in most
/// other ways it looks and acts like a std::string and so most templated
/// algorthms that would work on a "const std::string &" will also work
/// on a ustring.
///
/// Usage guidelines:
///
/// Compared to standard strings, ustrings have several advantages:
///
/// - Each individual ustring is very small -- in fact, we guarantee that
/// a ustring is the same size and memory layout as an ordinary char*.
/// - Storage is frugal, since there is only one allocated copy of each
/// unique character sequence, throughout the lifetime of the program.
/// - Assignment from one ustring to another is just copy of the pointer;
/// no allocation, no character copying, no reference counting.
/// - Equality testing (do the strings contain the same characters) is
/// a single operation, the comparison of the pointer.
/// - Memory allocation only occurs when a new ustring is construted from
/// raw characters the FIRST time -- subsequent constructions of the
/// same string just finds it in the canonial string set, but doesn't
/// need to allocate new storage. Destruction of a ustring is trivial,
/// there is no de-allocation because the canonical version stays in
/// the set. Also, therefore, no user code mistake can lead to
/// memory leaks.
///
/// But there are some problems, too. Canonical strings are never freed
/// from the table. So in some sense all the strings "leak", but they
/// only leak one copy for each unique string that the program ever comes
/// across. Also, creation of unique strings from raw characters is more
/// expensive than for standard strings, due to hashing, table queries,
/// and other overhead.
///
/// On the whole, ustrings are a really great string representation
/// - if you tend to have (relatively) few unique strings, but many
/// copies of those strings;
/// - if the creation of strings from raw characters is relatively
/// rare compared to copying or comparing to existing strings;
/// - if you tend to make the same strings over and over again, and
/// if it's relatively rare that a single unique character sequence
/// is used only once in the entire lifetime of the program;
/// - if your most common string operations are assignment and equality
/// testing and you want them to be as fast as possible;
/// - if you are doing relatively little character-by-character assembly
/// of strings, string concatenation, or other "string manipulation"
/// (other than equality testing).
///
/// ustrings are not so hot
/// - if your program tends to have very few copies of each character
/// sequence over the entire lifetime of the program;
/// - if your program tends to generate a huge variety of unique
/// strings over its lifetime, each of which is used only a short
/// time and then discarded, never to be needed again;
/// - if you don't need to do a lot of string assignment or equality
/// testing, but lots of more complex string manipulation.
///
/////////////////////////////////////////////////////////////////////////////
#ifndef OPENIMAGEIO_USTRING_H
#define OPENIMAGEIO_USTRING_H
#if defined(_MSC_VER)
// Ignore warnings about DLL exported classes with member variables that are template classes.
// This happens with the std::string empty_std_string static member variable of ustring below.
// Also remove a warning about the strncpy function not being safe and deprecated in MSVC.
// There is no equivalent safe and portable function and trying to fix this is more trouble than
// its worth. (see http://stackoverflow.com/questions/858252/alternatives-to-ms-strncpy-s)
# pragma warning (disable : 4251 4996)
#endif
#include <string>
#include <iostream>
#include <cstring>
#include "export.h"
#include "strutil.h"
#include "string_view.h"
#include "dassert.h"
#include "oiioversion.h"
#ifndef NULL
#define NULL 0
#endif
OIIO_NAMESPACE_BEGIN
class OIIO_API ustring {
public:
typedef char value_type;
typedef value_type * pointer;
typedef value_type & reference;
typedef const value_type & const_reference;
typedef size_t size_type;
static const size_type npos = static_cast<size_type>(-1);
typedef std::string::const_iterator const_iterator;
typedef std::string::const_reverse_iterator const_reverse_iterator;
/// Default ctr for ustring -- make an empty string.
///
ustring (void) : m_chars(NULL) { }
/// Construct a ustring from a null-terminated C string (char *).
///
explicit ustring (const char *str) {
m_chars = str ? make_unique(str) : NULL;
}
/// Construct a ustring from a string_view, which can be auto-converted
/// from either a null-terminated C string (char *) or a C++
/// std::string.
explicit ustring (string_view str) {
m_chars = str.data() ? make_unique(str) : NULL;
}
/// Construct a ustring from at most n characters of str, starting at
/// position pos.
ustring (const char *str, size_type pos, size_type n)
: m_chars (make_unique(std::string(str,pos,n).c_str())) { }
/// Construct a ustring from the first n characters of str.
///
ustring (const char *str, size_type n)
: m_chars (make_unique(string_view(str,n))) { }
/// Construct a ustring from n copies of character c.
///
ustring (size_type n, char c)
: m_chars (make_unique(std::string(n,c).c_str())) { }
/// Construct a ustring from an indexed substring of a std::string.
///
ustring (const std::string &str, size_type pos, size_type n=npos) {
string_view sref(str);
sref = sref.substr (pos, n);
m_chars = make_unique(sref);
}
/// Copy construct a ustring from another ustring.
///
ustring (const ustring &str) : m_chars(str.m_chars) { }
/// Construct a ustring from an indexed substring of a ustring.
///
ustring (const ustring &str, size_type pos, size_type n=npos) {
string_view sref(str);
sref = sref.substr (pos, n);
m_chars = make_unique(sref);
}
/// ustring destructor.
///
~ustring () { }
/// Conversion to string_view
operator string_view() const { return string_view(c_str(), length()); }
/// Assign a ustring to *this.
///
const ustring & assign (const ustring &str) {
m_chars = str.m_chars;
return *this;
}
/// Assign a substring of a ustring to *this.
///
const ustring & assign (const ustring &str, size_type pos, size_type n=npos)
{ *this = ustring(str,pos,n); return *this; }
/// Assign a std::string to *this.
///
const ustring & assign (const std::string &str) {
assign (str.c_str());
return *this;
}
/// Assign a substring of a std::string to *this.
///
const ustring & assign (const std::string &str, size_type pos,
size_type n=npos)
{ *this = ustring(str,pos,n); return *this; }
/// Assign a null-terminated C string (char*) to *this.
///
const ustring & assign (const char *str) {
m_chars = str ? make_unique(str) : NULL;
return *this;
}
/// Assign the first n characters of str to *this.
///
const ustring & assign (const char *str, size_type n)
{ *this = ustring(str,n); return *this; }
/// Assign n copies of c to *this.
///
const ustring & assign (size_type n, char c)
{ *this = ustring(n,c); return *this; }
/// Assign a string_view to *this.
const ustring & assign (string_view str) {
m_chars = str.length() ? make_unique(str) : NULL;
return *this;
}
/// Assign a ustring to another ustring.
///
const ustring & operator= (const ustring &str) { return assign(str); }
/// Assign a null-terminated C string (char *) to a ustring.
///
const ustring & operator= (const char *str) { return assign(str); }
/// Assign a C++ std::string to a ustring.
///
const ustring & operator= (const std::string &str) { return assign(str); }
/// Assign a string_view to a ustring.
///
const ustring & operator= (string_view str) { return assign(str); }
/// Assign a single char to a ustring.
///
const ustring & operator= (char c) {
char s[2];
s[0] = c; s[1] = 0;
*this = ustring (s);
return *this;
}
/// Return a C string representation of a ustring.
///
const char *c_str () const {
return m_chars;
}
/// Return a C string representation of a ustring.
///
const char *data () const { return c_str(); }
/// Return a C++ std::string representation of a ustring.
///
const std::string & string () const {
if (m_chars) {
const TableRep *rep = (const TableRep *)m_chars - 1;
return rep->str;
}
else return empty_std_string;
}
/// Reset to an empty string.
///
void clear (void) {
m_chars = NULL;
}
/// Return the number of characters in the string.
///
size_t length (void) const {
if (! m_chars)
return 0;
const TableRep *rep = ((const TableRep *)m_chars) - 1;
return rep->length;
}
/// Return a hashed version of the string
///
size_t hash (void) const {
if (! m_chars)
return 0;
const TableRep *rep = ((const TableRep *)m_chars) - 1;
return rep->hashed;
}
/// Return the number of characters in the string.
///
size_t size (void) const { return length(); }
/// Is the string empty -- i.e., is it the NULL pointer or does it
/// point to an empty string?
bool empty (void) const { return (size() == 0); }
/// Cast to int, which is interpreted as testing whether it's not an
/// empty string. This allows you to write "if (t)" with the same
/// semantics as if it were a char*.
operator int (void) const { return !empty(); }
/// Return a const_iterator that references the first character of
/// the string.
const_iterator begin () const { return string().begin(); }
/// Return a const_iterator that references the end of a traversal
/// of the characters of the string.
const_iterator end () const { return string().end(); }
/// Return a const_reverse_iterator that references the last
/// character of the string.
const_reverse_iterator rbegin () const { return string().rbegin(); }
/// Return a const_reverse_iterator that references the end of
/// a reverse traversal of the characters of the string.
const_reverse_iterator rend () const { return string().rend(); }
/// Return a reference to the character at the given position.
/// Note that it's up to the caller to be sure pos is within the
/// size of the string.
const_reference operator[] (size_type pos) const { return c_str()[pos]; }
/// Dump into character array s the characters of this ustring,
/// beginning with position pos and copying at most n characters.
size_type copy (char* s, size_type n, size_type pos = 0) const {
if (m_chars == NULL) {
s[0] = 0;
return 0;
}
char *c = strncpy (s, c_str()+pos, n);
return (size_type)(c-s);
}
/// Returns a substring of the ustring object consisting of n
/// characters starting at position pos.
ustring substr (size_type pos = 0, size_type n = npos) const {
return ustring (*this, pos, n);
}
// FIXME: implement compare.
size_type find(const ustring &str, size_type pos = 0) const {
return string().find(str.string(), pos);
}
size_type find(const std::string &str, size_type pos = 0) const {
return string().find(str, pos);
}
size_type find(const char *s, size_type pos, size_type n) const {
return string().find(s, pos, n);
}
size_type find(const char *s, size_type pos = 0) const {
return string().find(s, pos);
}
size_type find(char c, size_type pos = 0) const {
return string().find(c, pos);
}
size_type rfind(const ustring &str, size_type pos = npos) const {
return string().rfind(str.string(), pos);
}
size_type rfind(const std::string &str, size_type pos = npos) const {
return string().rfind(str, pos);
}
size_type rfind(const char *s, size_type pos, size_type n) const {
return string().rfind(s, pos, n);
}
size_type rfind(const char *s, size_type pos = npos) const {
return string().rfind(s, pos);
}
size_type rfind(char c, size_type pos = npos) const {
return string().rfind(c, pos);
}
size_type find_first_of(const ustring &str, size_type pos = 0) const {
return string().find_first_of(str.string(), pos);
}
size_type find_first_of(const std::string &str, size_type pos = 0) const {
return string().find_first_of(str, pos);
}
size_type find_first_of(const char *s, size_type pos, size_type n) const {
return string().find_first_of(s, pos, n);
}
size_type find_first_of(const char *s, size_type pos = 0) const {
return string().find_first_of(s, pos);
}
size_type find_first_of(char c, size_type pos = 0) const {
return string().find_first_of(c, pos);
}
size_type find_last_of(const ustring &str, size_type pos = npos) const {
return string().find_last_of(str.string(), pos);
}
size_type find_last_of(const std::string &str, size_type pos = npos) const {
return string().find_last_of(str, pos);
}
size_type find_last_of(const char *s, size_type pos, size_type n) const {
return string().find_last_of(s, pos, n);
}
size_type find_last_of(const char *s, size_type pos = npos) const {
return string().find_last_of(s, pos);
}
size_type find_last_of(char c, size_type pos = npos) const {
return string().find_last_of(c, pos);
}
size_type find_first_not_of(const ustring &str, size_type pos = 0) const {
return string().find_first_not_of(str.string(), pos);
}
size_type find_first_not_of(const std::string &str, size_type pos = 0) const {
return string().find_first_not_of(str, pos);
}
size_type find_first_not_of(const char *s, size_type pos, size_type n) const {
return string().find_first_not_of(s, pos, n);
}
size_type find_first_not_of(const char *s, size_type pos = 0) const {
return string().find_first_not_of(s, pos);
}
size_type find_first_not_of(char c, size_type pos = 0) const {
return string().find_first_not_of(c, pos);
}
size_type find_last_not_of(const ustring &str, size_type pos = npos) const {
return string().find_last_not_of(str.string(), pos);
}
size_type find_last_not_of(const std::string &str, size_type pos = npos) const {
return string().find_last_not_of(str, pos);
}
size_type find_last_not_of(const char *s, size_type pos, size_type n) const {
return string().find_last_not_of(s, pos, n);
}
size_type find_last_not_of(const char *s, size_type pos = npos) const {
return string().find_last_not_of(s, pos);
}
size_type find_last_not_of(char c, size_type pos = npos) const {
return string().find_last_not_of(c, pos);
}
/// Return 0 if *this is lexicographically equal to str, -1 if
/// *this is lexicographically earlier than str, 1 if *this is
/// lexicographically after str.
int compare (const ustring& str) const {
return (c_str() == str.c_str()) ? 0
: strcmp (c_str() ? c_str() : "", str.c_str() ? str.c_str() : "");
}
/// Return 0 if *this is lexicographically equal to str, -1 if
/// *this is lexicographically earlier than str, 1 if *this is
/// lexicographically after str.
int compare (const std::string& str) const {
return strcmp (c_str() ? c_str() : "", str.c_str());
}
/// Return 0 if *this is lexicographically equal to str, -1 if
/// *this is lexicographically earlier than str, 1 if *this is
/// lexicographically after str.
int compare (string_view str) const {
return strncmp (c_str() ? c_str() : "",
str.data() ? str.data() : "", str.length());
}
/// Return 0 if *this is lexicographically equal to str, -1 if
/// *this is lexicographically earlier than str, 1 if *this is
/// lexicographically after str.
int compare (const char *str) const {
return strcmp (c_str() ? c_str() : "", str ? str : "");
}
/// Return 0 if a is lexicographically equal to b, -1 if a is
/// lexicographically earlier than b, 1 if a is lexicographically
/// after b.
friend int compare (const std::string& a, const ustring &b) {
return strcmp (a.c_str(), b.c_str() ? b.c_str() : "");
}
/// Test two ustrings for equality -- are they comprised of the same
/// sequence of characters. Note that because ustrings are unique,
/// this is a trivial pointer comparison, not a char-by-char loop as
/// would be the case with a char* or a std::string.
bool operator== (const ustring &str) const {
return c_str() == str.c_str();
}
/// Test two ustrings for inequality -- are they comprised of different
/// sequences of characters. Note that because ustrings are unique,
/// this is a trivial pointer comparison, not a char-by-char loop as
/// would be the case with a char* or a std::string.
bool operator!= (const ustring &str) const {
return c_str() != str.c_str();
}
/// Test a ustring (*this) for lexicographic equality with std::string
/// x.
bool operator== (const std::string &x) const { return compare(x) == 0; }
/// Test a ustring (*this) for lexicographic equality with string_view
/// x.
bool operator== (string_view x) const { return compare(x) == 0; }
/// Test a ustring (*this) for lexicographic equality with char* x.
bool operator== (const char *x) const { return compare(x) == 0; }
/// Test for lexicographic equality between std::string a and ustring
/// b.
friend bool operator== (const std::string &a, const ustring &b) {
return b.compare(a) == 0;
}
/// Test for lexicographic equality between string_view a and ustring
/// b.
friend bool operator== (string_view a, const ustring &b) {
return b.compare(a) == 0;
}
/// Test for lexicographic equality between char* a and ustring
/// b.
friend bool operator== (const char *a, const ustring &b) {
return b.compare(a) == 0;
}
/// Test a ustring (*this) for lexicographic inequality with
/// std::string x.
bool operator!= (const std::string &x) const { return compare(x) != 0; }
/// Test a ustring (*this) for lexicographic inequality with
/// string_view x.
bool operator!= (string_view x) const { return compare(x) != 0; }
/// Test a ustring (*this) for lexicographic inequality with
/// char* x.
bool operator!= (const char *x) const { return compare(x) != 0; }
/// Test for lexicographic inequality between std::string a and
/// ustring b.
friend bool operator!= (const std::string &a, const ustring &b) {
return b.compare(a) != 0;
}
/// Test for lexicographic inequality between string_view a and
/// ustring b.
friend bool operator!= (string_view a, const ustring &b) {
return b.compare(a) != 0;
}
/// Test for lexicographic inequality between char* a and
/// ustring b.
friend bool operator!= (const char *a, const ustring &b) {
return b.compare(a) != 0;
}
/// Test for lexicographic 'less', comes in handy for lots of STL
/// containers and algorithms.
bool operator< (const ustring &x) const { return compare(x) < 0; }
/// Construct a ustring in a printf-like fashion. In other words,
/// something like:
/// ustring s = ustring::format ("blah %d %g", (int)foo, (float)bar);
///
/// The printf argument list is fully typesafe via tinyformat; format
/// conceptually has the signature
///
/// static ustring format (const char *fmt, ...);
TINYFORMAT_WRAP_FORMAT (static ustring, format, /**/,
std::ostringstream msg;, msg, return ustring(msg.str());)
/// Generic stream output of a ustring.
///
friend std::ostream & operator<< (std::ostream &out, const ustring &str) {
if (str.c_str() && out.good())
out.write (str.c_str(), str.size());
return out;
}
/// Return the statistics output as a string.
///
static std::string getstats (bool verbose = true);
/// Return the amount of memory consumed by the ustring table.
///
static size_t memory ();
/// Given a string_view, return a pointer to the unique
/// version kept in the internal table (creating a new table entry
/// if we haven't seen this sequence of characters before).
/// N.B.: this is equivalent to ustring(str).c_str(). It's also the
/// routine that is used directly by ustring's internals to generate
/// the canonical unique copy of the characters.
static const char * make_unique (string_view str);
/// Is this character pointer a unique ustring representation of
/// those characters? Useful for diagnostics and debugging.
static bool is_unique (const char *str) {
return str == NULL || make_unique(str) == str;
}
/// Create a ustring from characters guaranteed to already be
/// ustring-clean, without having to run through the hash yet
/// again. Use with extreme caution!!!
static ustring from_unique (const char *unique) {
DASSERT (is_unique(unique)); // DEBUG builds -- check it!
ustring u;
u.m_chars = unique;
return u;
}
private:
// Individual ustring internal representation -- the unique characters.
//
const char *m_chars;
public:
// Representation within the hidden string table -- DON'T EVER CREATE
// ONE OF THESE YOURSELF!
// The characters are found directly after the rep. So that means that
// if you know the rep, the chars are at (char *)(rep+1), and if you
// know the chars, the rep is at ((TableRep *)chars - 1).
struct TableRep {
size_t hashed; // precomputed Hash value
std::string str; // String representation
size_t length; // Length of the string; must be right before cap
size_t dummy_capacity; // Dummy field! must be right before refcount
int dummy_refcount; // Dummy field! must be right before chars
TableRep (string_view strref, size_t hash);
~TableRep ();
const char *c_str () const { return (const char *)(this + 1); }
};
private:
static std::string empty_std_string;
};
/// Functor class to use as a hasher when you want to make a hash_map or
/// hash_set using ustring as a key.
class ustringHash
{
public:
size_t operator() (const ustring &s) const { return s.hash(); }
};
/// Functor class to use for comparisons when sorting ustrings, if you
/// want the strings sorted lexicographically.
class ustringLess
{
public:
size_t operator() (ustring a, ustring b) const {return a<b; }
};
/// Functor class to use for comparisons when sorting ustrings, if you
/// don't care if the sort order is lexicographic. This sorts based on
/// the pointers themselves, which is safe because once allocated, a
/// ustring's characters will never be moved. But beware, the resulting
/// sorting order may vary from run to run!
class ustringPtrIsLess
{
public:
size_t operator() (ustring a, ustring b) const {
return size_t(a.data()) < size_t(b.data());
}
};
OIIO_DEPRECATED("Use ustringPtrIsLess [1.6]")
typedef ustringPtrIsLess ustringHashIsLess;
/// Case-insensitive comparison of ustrings. For speed, this always
/// uses a static locale that doesn't require a mutex lock.
inline bool iequals (ustring a, ustring b) {
return a==b || Strutil::iequals(a.string(), b.string());
}
inline bool iequals (ustring a, const std::string &b) {
return Strutil::iequals(a.string(), b);
}
inline bool iequals (const std::string &a, ustring b) {
return Strutil::iequals(a, b.string());
}
OIIO_NAMESPACE_END
#endif // OPENIMAGEIO_USTRING_H
|