This file is indexed.

/usr/include/opencv2/core/cvstd.hpp is in libopencv-core-dev 3.2.0+dfsg-4build2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                          License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef OPENCV_CORE_CVSTD_HPP
#define OPENCV_CORE_CVSTD_HPP

#ifndef __cplusplus
#  error cvstd.hpp header must be compiled as C++
#endif

#include "opencv2/core/cvdef.h"

#include <cstddef>
#include <cstring>
#include <cctype>

#ifndef OPENCV_NOSTL
#  include <string>
#endif

// import useful primitives from stl
#ifndef OPENCV_NOSTL_TRANSITIONAL
#  include <algorithm>
#  include <utility>
#  include <cstdlib> //for abs(int)
#  include <cmath>

namespace cv
{
    static inline uchar abs(uchar a) { return a; }
    static inline ushort abs(ushort a) { return a; }
    static inline unsigned abs(unsigned a) { return a; }
    static inline uint64 abs(uint64 a) { return a; }

    using std::min;
    using std::max;
    using std::abs;
    using std::swap;
    using std::sqrt;
    using std::exp;
    using std::pow;
    using std::log;
}

#else
namespace cv
{
    template<typename T> static inline T min(T a, T b) { return a < b ? a : b; }
    template<typename T> static inline T max(T a, T b) { return a > b ? a : b; }
    template<typename T> static inline T abs(T a) { return a < 0 ? -a : a; }
    template<typename T> static inline void swap(T& a, T& b) { T tmp = a; a = b; b = tmp; }

    template<> inline uchar abs(uchar a) { return a; }
    template<> inline ushort abs(ushort a) { return a; }
    template<> inline unsigned abs(unsigned a) { return a; }
    template<> inline uint64 abs(uint64 a) { return a; }
}
#endif

namespace cv {

//! @addtogroup core_utils
//! @{

//////////////////////////// memory management functions ////////////////////////////

/** @brief Allocates an aligned memory buffer.

The function allocates the buffer of the specified size and returns it. When the buffer size is 16
bytes or more, the returned buffer is aligned to 16 bytes.
@param bufSize Allocated buffer size.
 */
CV_EXPORTS void* fastMalloc(size_t bufSize);

/** @brief Deallocates a memory buffer.

The function deallocates the buffer allocated with fastMalloc . If NULL pointer is passed, the
function does nothing. C version of the function clears the pointer *pptr* to avoid problems with
double memory deallocation.
@param ptr Pointer to the allocated buffer.
 */
CV_EXPORTS void fastFree(void* ptr);

/*!
  The STL-compilant memory Allocator based on cv::fastMalloc() and cv::fastFree()
*/
template<typename _Tp> class Allocator
{
public:
    typedef _Tp value_type;
    typedef value_type* pointer;
    typedef const value_type* const_pointer;
    typedef value_type& reference;
    typedef const value_type& const_reference;
    typedef size_t size_type;
    typedef ptrdiff_t difference_type;
    template<typename U> class rebind { typedef Allocator<U> other; };

    explicit Allocator() {}
    ~Allocator() {}
    explicit Allocator(Allocator const&) {}
    template<typename U>
    explicit Allocator(Allocator<U> const&) {}

    // address
    pointer address(reference r) { return &r; }
    const_pointer address(const_reference r) { return &r; }

    pointer allocate(size_type count, const void* =0) { return reinterpret_cast<pointer>(fastMalloc(count * sizeof (_Tp))); }
    void deallocate(pointer p, size_type) { fastFree(p); }

    void construct(pointer p, const _Tp& v) { new(static_cast<void*>(p)) _Tp(v); }
    void destroy(pointer p) { p->~_Tp(); }

    size_type max_size() const { return cv::max(static_cast<_Tp>(-1)/sizeof(_Tp), 1); }
};

//! @} core_utils

//! @cond IGNORED

namespace detail
{

// Metafunction to avoid taking a reference to void.
template<typename T>
struct RefOrVoid { typedef T& type; };

template<>
struct RefOrVoid<void>{ typedef void type; };

template<>
struct RefOrVoid<const void>{ typedef const void type; };

template<>
struct RefOrVoid<volatile void>{ typedef volatile void type; };

template<>
struct RefOrVoid<const volatile void>{ typedef const volatile void type; };

// This class would be private to Ptr, if it didn't have to be a non-template.
struct PtrOwner;

}

template<typename Y>
struct DefaultDeleter
{
    void operator () (Y* p) const;
};

//! @endcond

//! @addtogroup core_basic
//! @{

/** @brief Template class for smart pointers with shared ownership

A Ptr\<T\> pretends to be a pointer to an object of type T. Unlike an ordinary pointer, however, the
object will be automatically cleaned up once all Ptr instances pointing to it are destroyed.

Ptr is similar to boost::shared_ptr that is part of the Boost library
(<http://www.boost.org/doc/libs/release/libs/smart_ptr/shared_ptr.htm>) and std::shared_ptr from
the [C++11](http://en.wikipedia.org/wiki/C++11) standard.

This class provides the following advantages:
-   Default constructor, copy constructor, and assignment operator for an arbitrary C++ class or C
    structure. For some objects, like files, windows, mutexes, sockets, and others, a copy
    constructor or an assignment operator are difficult to define. For some other objects, like
    complex classifiers in OpenCV, copy constructors are absent and not easy to implement. Finally,
    some of complex OpenCV and your own data structures may be written in C. However, copy
    constructors and default constructors can simplify programming a lot. Besides, they are often
    required (for example, by STL containers). By using a Ptr to such an object instead of the
    object itself, you automatically get all of the necessary constructors and the assignment
    operator.
-   *O(1)* complexity of the above-mentioned operations. While some structures, like std::vector,
    provide a copy constructor and an assignment operator, the operations may take a considerable
    amount of time if the data structures are large. But if the structures are put into a Ptr, the
    overhead is small and independent of the data size.
-   Automatic and customizable cleanup, even for C structures. See the example below with FILE\*.
-   Heterogeneous collections of objects. The standard STL and most other C++ and OpenCV containers
    can store only objects of the same type and the same size. The classical solution to store
    objects of different types in the same container is to store pointers to the base class (Base\*)
    instead but then you lose the automatic memory management. Again, by using Ptr\<Base\> instead
    of raw pointers, you can solve the problem.

A Ptr is said to *own* a pointer - that is, for each Ptr there is a pointer that will be deleted
once all Ptr instances that own it are destroyed. The owned pointer may be null, in which case
nothing is deleted. Each Ptr also *stores* a pointer. The stored pointer is the pointer the Ptr
pretends to be; that is, the one you get when you use Ptr::get or the conversion to T\*. It's
usually the same as the owned pointer, but if you use casts or the general shared-ownership
constructor, the two may diverge: the Ptr will still own the original pointer, but will itself point
to something else.

The owned pointer is treated as a black box. The only thing Ptr needs to know about it is how to
delete it. This knowledge is encapsulated in the *deleter* - an auxiliary object that is associated
with the owned pointer and shared between all Ptr instances that own it. The default deleter is an
instance of DefaultDeleter, which uses the standard C++ delete operator; as such it will work with
any pointer allocated with the standard new operator.

However, if the pointer must be deleted in a different way, you must specify a custom deleter upon
Ptr construction. A deleter is simply a callable object that accepts the pointer as its sole
argument. For example, if you want to wrap FILE, you may do so as follows:
@code
    Ptr<FILE> f(fopen("myfile.txt", "w"), fclose);
    if(!f) throw ...;
    fprintf(f, ....);
    ...
    // the file will be closed automatically by f's destructor.
@endcode
Alternatively, if you want all pointers of a particular type to be deleted the same way, you can
specialize DefaultDeleter<T>::operator() for that type, like this:
@code
    namespace cv {
    template<> void DefaultDeleter<FILE>::operator ()(FILE * obj) const
    {
        fclose(obj);
    }
    }
@endcode
For convenience, the following types from the OpenCV C API already have such a specialization that
calls the appropriate release function:
-   CvCapture
-   CvFileStorage
-   CvHaarClassifierCascade
-   CvMat
-   CvMatND
-   CvMemStorage
-   CvSparseMat
-   CvVideoWriter
-   IplImage
@note The shared ownership mechanism is implemented with reference counting. As such, cyclic
ownership (e.g. when object a contains a Ptr to object b, which contains a Ptr to object a) will
lead to all involved objects never being cleaned up. Avoid such situations.
@note It is safe to concurrently read (but not write) a Ptr instance from multiple threads and
therefore it is normally safe to use it in multi-threaded applications. The same is true for Mat and
other C++ OpenCV classes that use internal reference counts.
*/
template<typename T>
struct Ptr
{
    /** Generic programming support. */
    typedef T element_type;

    /** The default constructor creates a null Ptr - one that owns and stores a null pointer.
    */
    Ptr();

    /**
    If p is null, these are equivalent to the default constructor.
    Otherwise, these constructors assume ownership of p - that is, the created Ptr owns and stores p
    and assumes it is the sole owner of it. Don't use them if p is already owned by another Ptr, or
    else p will get deleted twice.
    With the first constructor, DefaultDeleter\<Y\>() becomes the associated deleter (so p will
    eventually be deleted with the standard delete operator). Y must be a complete type at the point
    of invocation.
    With the second constructor, d becomes the associated deleter.
    Y\* must be convertible to T\*.
    @param p Pointer to own.
    @note It is often easier to use makePtr instead.
     */
    template<typename Y>
#ifdef DISABLE_OPENCV_24_COMPATIBILITY
    explicit
#endif
    Ptr(Y* p);

    /** @overload
    @param d Deleter to use for the owned pointer.
    @param p Pointer to own.
    */
    template<typename Y, typename D>
    Ptr(Y* p, D d);

    /**
    These constructors create a Ptr that shares ownership with another Ptr - that is, own the same
    pointer as o.
    With the first two, the same pointer is stored, as well; for the second, Y\* must be convertible
    to T\*.
    With the third, p is stored, and Y may be any type. This constructor allows to have completely
    unrelated owned and stored pointers, and should be used with care to avoid confusion. A relatively
    benign use is to create a non-owning Ptr, like this:
    @code
        ptr = Ptr<T>(Ptr<T>(), dont_delete_me); // owns nothing; will not delete the pointer.
    @endcode
    @param o Ptr to share ownership with.
    */
    Ptr(const Ptr& o);

    /** @overload
    @param o Ptr to share ownership with.
    */
    template<typename Y>
    Ptr(const Ptr<Y>& o);

    /** @overload
    @param o Ptr to share ownership with.
    @param p Pointer to store.
    */
    template<typename Y>
    Ptr(const Ptr<Y>& o, T* p);

    /** The destructor is equivalent to calling Ptr::release. */
    ~Ptr();

    /**
    Assignment replaces the current Ptr instance with one that owns and stores same pointers as o and
    then destroys the old instance.
    @param o Ptr to share ownership with.
     */
    Ptr& operator = (const Ptr& o);

    /** @overload */
    template<typename Y>
    Ptr& operator = (const Ptr<Y>& o);

    /** If no other Ptr instance owns the owned pointer, deletes it with the associated deleter. Then sets
    both the owned and the stored pointers to NULL.
    */
    void release();

    /**
    `ptr.reset(...)` is equivalent to `ptr = Ptr<T>(...)`.
    @param p Pointer to own.
    */
    template<typename Y>
    void reset(Y* p);

    /** @overload
    @param d Deleter to use for the owned pointer.
    @param p Pointer to own.
    */
    template<typename Y, typename D>
    void reset(Y* p, D d);

    /**
    Swaps the owned and stored pointers (and deleters, if any) of this and o.
    @param o Ptr to swap with.
    */
    void swap(Ptr& o);

    /** Returns the stored pointer. */
    T* get() const;

    /** Ordinary pointer emulation. */
    typename detail::RefOrVoid<T>::type operator * () const;

    /** Ordinary pointer emulation. */
    T* operator -> () const;

    /** Equivalent to get(). */
    operator T* () const;

    /** ptr.empty() is equivalent to `!ptr.get()`. */
    bool empty() const;

    /** Returns a Ptr that owns the same pointer as this, and stores the same
       pointer as this, except converted via static_cast to Y*.
    */
    template<typename Y>
    Ptr<Y> staticCast() const;

    /** Ditto for const_cast. */
    template<typename Y>
    Ptr<Y> constCast() const;

    /** Ditto for dynamic_cast. */
    template<typename Y>
    Ptr<Y> dynamicCast() const;

#ifdef CV_CXX_MOVE_SEMANTICS
    Ptr(Ptr&& o);
    Ptr& operator = (Ptr&& o);
#endif

private:
    detail::PtrOwner* owner;
    T* stored;

    template<typename Y>
    friend struct Ptr; // have to do this for the cross-type copy constructor
};

/** Equivalent to ptr1.swap(ptr2). Provided to help write generic algorithms. */
template<typename T>
void swap(Ptr<T>& ptr1, Ptr<T>& ptr2);

/** Return whether ptr1.get() and ptr2.get() are equal and not equal, respectively. */
template<typename T>
bool operator == (const Ptr<T>& ptr1, const Ptr<T>& ptr2);
template<typename T>
bool operator != (const Ptr<T>& ptr1, const Ptr<T>& ptr2);

/** `makePtr<T>(...)` is equivalent to `Ptr<T>(new T(...))`. It is shorter than the latter, and it's
marginally safer than using a constructor or Ptr::reset, since it ensures that the owned pointer
is new and thus not owned by any other Ptr instance.
Unfortunately, perfect forwarding is impossible to implement in C++03, and so makePtr is limited
to constructors of T that have up to 10 arguments, none of which are non-const references.
 */
template<typename T>
Ptr<T> makePtr();
/** @overload */
template<typename T, typename A1>
Ptr<T> makePtr(const A1& a1);
/** @overload */
template<typename T, typename A1, typename A2>
Ptr<T> makePtr(const A1& a1, const A2& a2);
/** @overload */
template<typename T, typename A1, typename A2, typename A3>
Ptr<T> makePtr(const A1& a1, const A2& a2, const A3& a3);
/** @overload */
template<typename T, typename A1, typename A2, typename A3, typename A4>
Ptr<T> makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4);
/** @overload */
template<typename T, typename A1, typename A2, typename A3, typename A4, typename A5>
Ptr<T> makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5);
/** @overload */
template<typename T, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6>
Ptr<T> makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6);
/** @overload */
template<typename T, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7>
Ptr<T> makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7);
/** @overload */
template<typename T, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8>
Ptr<T> makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8);
/** @overload */
template<typename T, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8, typename A9>
Ptr<T> makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9);
/** @overload */
template<typename T, typename A1, typename A2, typename A3, typename A4, typename A5, typename A6, typename A7, typename A8, typename A9, typename A10>
Ptr<T> makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9, const A10& a10);

//////////////////////////////// string class ////////////////////////////////

class CV_EXPORTS FileNode; //for string constructor from FileNode

class CV_EXPORTS String
{
public:
    typedef char value_type;
    typedef char& reference;
    typedef const char& const_reference;
    typedef char* pointer;
    typedef const char* const_pointer;
    typedef ptrdiff_t difference_type;
    typedef size_t size_type;
    typedef char* iterator;
    typedef const char* const_iterator;

    static const size_t npos = size_t(-1);

    explicit String();
    String(const String& str);
    String(const String& str, size_t pos, size_t len = npos);
    String(const char* s);
    String(const char* s, size_t n);
    String(size_t n, char c);
    String(const char* first, const char* last);
    template<typename Iterator> String(Iterator first, Iterator last);
    explicit String(const FileNode& fn);
    ~String();

    String& operator=(const String& str);
    String& operator=(const char* s);
    String& operator=(char c);

    String& operator+=(const String& str);
    String& operator+=(const char* s);
    String& operator+=(char c);

    size_t size() const;
    size_t length() const;

    char operator[](size_t idx) const;
    char operator[](int idx) const;

    const char* begin() const;
    const char* end() const;

    const char* c_str() const;

    bool empty() const;
    void clear();

    int compare(const char* s) const;
    int compare(const String& str) const;

    void swap(String& str);
    String substr(size_t pos = 0, size_t len = npos) const;

    size_t find(const char* s, size_t pos, size_t n) const;
    size_t find(char c, size_t pos = 0) const;
    size_t find(const String& str, size_t pos = 0) const;
    size_t find(const char* s, size_t pos = 0) const;

    size_t rfind(const char* s, size_t pos, size_t n) const;
    size_t rfind(char c, size_t pos = npos) const;
    size_t rfind(const String& str, size_t pos = npos) const;
    size_t rfind(const char* s, size_t pos = npos) const;

    size_t find_first_of(const char* s, size_t pos, size_t n) const;
    size_t find_first_of(char c, size_t pos = 0) const;
    size_t find_first_of(const String& str, size_t pos = 0) const;
    size_t find_first_of(const char* s, size_t pos = 0) const;

    size_t find_last_of(const char* s, size_t pos, size_t n) const;
    size_t find_last_of(char c, size_t pos = npos) const;
    size_t find_last_of(const String& str, size_t pos = npos) const;
    size_t find_last_of(const char* s, size_t pos = npos) const;

    friend String operator+ (const String& lhs, const String& rhs);
    friend String operator+ (const String& lhs, const char*   rhs);
    friend String operator+ (const char*   lhs, const String& rhs);
    friend String operator+ (const String& lhs, char          rhs);
    friend String operator+ (char          lhs, const String& rhs);

    String toLowerCase() const;

#ifndef OPENCV_NOSTL
    String(const std::string& str);
    String(const std::string& str, size_t pos, size_t len = npos);
    String& operator=(const std::string& str);
    String& operator+=(const std::string& str);
    operator std::string() const;

    friend String operator+ (const String& lhs, const std::string& rhs);
    friend String operator+ (const std::string& lhs, const String& rhs);
#endif

private:
    char*  cstr_;
    size_t len_;

    char* allocate(size_t len); // len without trailing 0
    void deallocate();

    String(int); // disabled and invalid. Catch invalid usages like, commandLineParser.has(0) problem
};

//! @} core_basic

////////////////////////// cv::String implementation /////////////////////////

//! @cond IGNORED

inline
String::String()
    : cstr_(0), len_(0)
{}

inline
String::String(const String& str)
    : cstr_(str.cstr_), len_(str.len_)
{
    if (cstr_)
        CV_XADD(((int*)cstr_)-1, 1);
}

inline
String::String(const String& str, size_t pos, size_t len)
    : cstr_(0), len_(0)
{
    pos = min(pos, str.len_);
    len = min(str.len_ - pos, len);
    if (!len) return;
    if (len == str.len_)
    {
        CV_XADD(((int*)str.cstr_)-1, 1);
        cstr_ = str.cstr_;
        len_ = str.len_;
        return;
    }
    memcpy(allocate(len), str.cstr_ + pos, len);
}

inline
String::String(const char* s)
    : cstr_(0), len_(0)
{
    if (!s) return;
    size_t len = strlen(s);
    memcpy(allocate(len), s, len);
}

inline
String::String(const char* s, size_t n)
    : cstr_(0), len_(0)
{
    if (!n) return;
    memcpy(allocate(n), s, n);
}

inline
String::String(size_t n, char c)
    : cstr_(0), len_(0)
{
    memset(allocate(n), c, n);
}

inline
String::String(const char* first, const char* last)
    : cstr_(0), len_(0)
{
    size_t len = (size_t)(last - first);
    memcpy(allocate(len), first, len);
}

template<typename Iterator> inline
String::String(Iterator first, Iterator last)
    : cstr_(0), len_(0)
{
    size_t len = (size_t)(last - first);
    char* str = allocate(len);
    while (first != last)
    {
        *str++ = *first;
        ++first;
    }
}

inline
String::~String()
{
    deallocate();
}

inline
String& String::operator=(const String& str)
{
    if (&str == this) return *this;

    deallocate();
    if (str.cstr_) CV_XADD(((int*)str.cstr_)-1, 1);
    cstr_ = str.cstr_;
    len_ = str.len_;
    return *this;
}

inline
String& String::operator=(const char* s)
{
    deallocate();
    if (!s) return *this;
    size_t len = strlen(s);
    memcpy(allocate(len), s, len);
    return *this;
}

inline
String& String::operator=(char c)
{
    deallocate();
    allocate(1)[0] = c;
    return *this;
}

inline
String& String::operator+=(const String& str)
{
    *this = *this + str;
    return *this;
}

inline
String& String::operator+=(const char* s)
{
    *this = *this + s;
    return *this;
}

inline
String& String::operator+=(char c)
{
    *this = *this + c;
    return *this;
}

inline
size_t String::size() const
{
    return len_;
}

inline
size_t String::length() const
{
    return len_;
}

inline
char String::operator[](size_t idx) const
{
    return cstr_[idx];
}

inline
char String::operator[](int idx) const
{
    return cstr_[idx];
}

inline
const char* String::begin() const
{
    return cstr_;
}

inline
const char* String::end() const
{
    return len_ ? cstr_ + 1 : 0;
}

inline
bool String::empty() const
{
    return len_ == 0;
}

inline
const char* String::c_str() const
{
    return cstr_ ? cstr_ : "";
}

inline
void String::swap(String& str)
{
    cv::swap(cstr_, str.cstr_);
    cv::swap(len_, str.len_);
}

inline
void String::clear()
{
    deallocate();
}

inline
int String::compare(const char* s) const
{
    if (cstr_ == s) return 0;
    return strcmp(c_str(), s);
}

inline
int String::compare(const String& str) const
{
    if (cstr_ == str.cstr_) return 0;
    return strcmp(c_str(), str.c_str());
}

inline
String String::substr(size_t pos, size_t len) const
{
    return String(*this, pos, len);
}

inline
size_t String::find(const char* s, size_t pos, size_t n) const
{
    if (n == 0 || pos + n > len_) return npos;
    const char* lmax = cstr_ + len_ - n;
    for (const char* i = cstr_ + pos; i <= lmax; ++i)
    {
        size_t j = 0;
        while (j < n && s[j] == i[j]) ++j;
        if (j == n) return (size_t)(i - cstr_);
    }
    return npos;
}

inline
size_t String::find(char c, size_t pos) const
{
    return find(&c, pos, 1);
}

inline
size_t String::find(const String& str, size_t pos) const
{
    return find(str.c_str(), pos, str.len_);
}

inline
size_t String::find(const char* s, size_t pos) const
{
    if (pos >= len_ || !s[0]) return npos;
    const char* lmax = cstr_ + len_;
    for (const char* i = cstr_ + pos; i < lmax; ++i)
    {
        size_t j = 0;
        while (s[j] && s[j] == i[j])
        {   if(i + j >= lmax) return npos;
            ++j;
        }
        if (!s[j]) return (size_t)(i - cstr_);
    }
    return npos;
}

inline
size_t String::rfind(const char* s, size_t pos, size_t n) const
{
    if (n > len_) return npos;
    if (pos > len_ - n) pos = len_ - n;
    for (const char* i = cstr_ + pos; i >= cstr_; --i)
    {
        size_t j = 0;
        while (j < n && s[j] == i[j]) ++j;
        if (j == n) return (size_t)(i - cstr_);
    }
    return npos;
}

inline
size_t String::rfind(char c, size_t pos) const
{
    return rfind(&c, pos, 1);
}

inline
size_t String::rfind(const String& str, size_t pos) const
{
    return rfind(str.c_str(), pos, str.len_);
}

inline
size_t String::rfind(const char* s, size_t pos) const
{
    return rfind(s, pos, strlen(s));
}

inline
size_t String::find_first_of(const char* s, size_t pos, size_t n) const
{
    if (n == 0 || pos + n > len_) return npos;
    const char* lmax = cstr_ + len_;
    for (const char* i = cstr_ + pos; i < lmax; ++i)
    {
        for (size_t j = 0; j < n; ++j)
            if (s[j] == *i)
                return (size_t)(i - cstr_);
    }
    return npos;
}

inline
size_t String::find_first_of(char c, size_t pos) const
{
    return find_first_of(&c, pos, 1);
}

inline
size_t String::find_first_of(const String& str, size_t pos) const
{
    return find_first_of(str.c_str(), pos, str.len_);
}

inline
size_t String::find_first_of(const char* s, size_t pos) const
{
    if (len_ == 0) return npos;
    if (pos >= len_ || !s[0]) return npos;
    const char* lmax = cstr_ + len_;
    for (const char* i = cstr_ + pos; i < lmax; ++i)
    {
        for (size_t j = 0; s[j]; ++j)
            if (s[j] == *i)
                return (size_t)(i - cstr_);
    }
    return npos;
}

inline
size_t String::find_last_of(const char* s, size_t pos, size_t n) const
{
    if (len_ == 0) return npos;
    if (pos >= len_) pos = len_ - 1;
    for (const char* i = cstr_ + pos; i >= cstr_; --i)
    {
        for (size_t j = 0; j < n; ++j)
            if (s[j] == *i)
                return (size_t)(i - cstr_);
    }
    return npos;
}

inline
size_t String::find_last_of(char c, size_t pos) const
{
    return find_last_of(&c, pos, 1);
}

inline
size_t String::find_last_of(const String& str, size_t pos) const
{
    return find_last_of(str.c_str(), pos, str.len_);
}

inline
size_t String::find_last_of(const char* s, size_t pos) const
{
    if (len_ == 0) return npos;
    if (pos >= len_) pos = len_ - 1;
    for (const char* i = cstr_ + pos; i >= cstr_; --i)
    {
        for (size_t j = 0; s[j]; ++j)
            if (s[j] == *i)
                return (size_t)(i - cstr_);
    }
    return npos;
}

inline
String String::toLowerCase() const
{
    String res(cstr_, len_);

    for (size_t i = 0; i < len_; ++i)
        res.cstr_[i] = (char) ::tolower(cstr_[i]);

    return res;
}

//! @endcond

// ************************* cv::String non-member functions *************************

//! @relates cv::String
//! @{

inline
String operator + (const String& lhs, const String& rhs)
{
    String s;
    s.allocate(lhs.len_ + rhs.len_);
    memcpy(s.cstr_, lhs.cstr_, lhs.len_);
    memcpy(s.cstr_ + lhs.len_, rhs.cstr_, rhs.len_);
    return s;
}

inline
String operator + (const String& lhs, const char* rhs)
{
    String s;
    size_t rhslen = strlen(rhs);
    s.allocate(lhs.len_ + rhslen);
    memcpy(s.cstr_, lhs.cstr_, lhs.len_);
    memcpy(s.cstr_ + lhs.len_, rhs, rhslen);
    return s;
}

inline
String operator + (const char* lhs, const String& rhs)
{
    String s;
    size_t lhslen = strlen(lhs);
    s.allocate(lhslen + rhs.len_);
    memcpy(s.cstr_, lhs, lhslen);
    memcpy(s.cstr_ + lhslen, rhs.cstr_, rhs.len_);
    return s;
}

inline
String operator + (const String& lhs, char rhs)
{
    String s;
    s.allocate(lhs.len_ + 1);
    memcpy(s.cstr_, lhs.cstr_, lhs.len_);
    s.cstr_[lhs.len_] = rhs;
    return s;
}

inline
String operator + (char lhs, const String& rhs)
{
    String s;
    s.allocate(rhs.len_ + 1);
    s.cstr_[0] = lhs;
    memcpy(s.cstr_ + 1, rhs.cstr_, rhs.len_);
    return s;
}

static inline bool operator== (const String& lhs, const String& rhs) { return 0 == lhs.compare(rhs); }
static inline bool operator== (const char*   lhs, const String& rhs) { return 0 == rhs.compare(lhs); }
static inline bool operator== (const String& lhs, const char*   rhs) { return 0 == lhs.compare(rhs); }
static inline bool operator!= (const String& lhs, const String& rhs) { return 0 != lhs.compare(rhs); }
static inline bool operator!= (const char*   lhs, const String& rhs) { return 0 != rhs.compare(lhs); }
static inline bool operator!= (const String& lhs, const char*   rhs) { return 0 != lhs.compare(rhs); }
static inline bool operator<  (const String& lhs, const String& rhs) { return lhs.compare(rhs) <  0; }
static inline bool operator<  (const char*   lhs, const String& rhs) { return rhs.compare(lhs) >  0; }
static inline bool operator<  (const String& lhs, const char*   rhs) { return lhs.compare(rhs) <  0; }
static inline bool operator<= (const String& lhs, const String& rhs) { return lhs.compare(rhs) <= 0; }
static inline bool operator<= (const char*   lhs, const String& rhs) { return rhs.compare(lhs) >= 0; }
static inline bool operator<= (const String& lhs, const char*   rhs) { return lhs.compare(rhs) <= 0; }
static inline bool operator>  (const String& lhs, const String& rhs) { return lhs.compare(rhs) >  0; }
static inline bool operator>  (const char*   lhs, const String& rhs) { return rhs.compare(lhs) <  0; }
static inline bool operator>  (const String& lhs, const char*   rhs) { return lhs.compare(rhs) >  0; }
static inline bool operator>= (const String& lhs, const String& rhs) { return lhs.compare(rhs) >= 0; }
static inline bool operator>= (const char*   lhs, const String& rhs) { return rhs.compare(lhs) <= 0; }
static inline bool operator>= (const String& lhs, const char*   rhs) { return lhs.compare(rhs) >= 0; }

//! @} relates cv::String

} // cv

#ifndef OPENCV_NOSTL_TRANSITIONAL
namespace std
{
    static inline void swap(cv::String& a, cv::String& b) { a.swap(b); }
}
#else
namespace cv
{
    template<> inline
    void swap<cv::String>(cv::String& a, cv::String& b)
    {
        a.swap(b);
    }
}
#endif

#include "opencv2/core/ptr.inl.hpp"

#endif //OPENCV_CORE_CVSTD_HPP