This file is indexed.

/usr/include/opencv2/core/cuda/functional.hpp is in libopencv-core-dev 3.2.0+dfsg-4build2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef OPENCV_CUDA_FUNCTIONAL_HPP
#define OPENCV_CUDA_FUNCTIONAL_HPP

#include <functional>
#include "saturate_cast.hpp"
#include "vec_traits.hpp"
#include "type_traits.hpp"
#include "device_functions.h"

/** @file
 * @deprecated Use @ref cudev instead.
 */

//! @cond IGNORED

namespace cv { namespace cuda { namespace device
{
    // Function Objects
    template<typename Argument, typename Result> struct unary_function : public std::unary_function<Argument, Result> {};
    template<typename Argument1, typename Argument2, typename Result> struct binary_function : public std::binary_function<Argument1, Argument2, Result> {};

    // Arithmetic Operations
    template <typename T> struct plus : binary_function<T, T, T>
    {
        __device__ __forceinline__ T operator ()(typename TypeTraits<T>::ParameterType a,
                                                 typename TypeTraits<T>::ParameterType b) const
        {
            return a + b;
        }
        __host__ __device__ __forceinline__ plus() {}
        __host__ __device__ __forceinline__ plus(const plus&) {}
    };

    template <typename T> struct minus : binary_function<T, T, T>
    {
        __device__ __forceinline__ T operator ()(typename TypeTraits<T>::ParameterType a,
                                                 typename TypeTraits<T>::ParameterType b) const
        {
            return a - b;
        }
        __host__ __device__ __forceinline__ minus() {}
        __host__ __device__ __forceinline__ minus(const minus&) {}
    };

    template <typename T> struct multiplies : binary_function<T, T, T>
    {
        __device__ __forceinline__ T operator ()(typename TypeTraits<T>::ParameterType a,
                                                 typename TypeTraits<T>::ParameterType b) const
        {
            return a * b;
        }
        __host__ __device__ __forceinline__ multiplies() {}
        __host__ __device__ __forceinline__ multiplies(const multiplies&) {}
    };

    template <typename T> struct divides : binary_function<T, T, T>
    {
        __device__ __forceinline__ T operator ()(typename TypeTraits<T>::ParameterType a,
                                                 typename TypeTraits<T>::ParameterType b) const
        {
            return a / b;
        }
        __host__ __device__ __forceinline__ divides() {}
        __host__ __device__ __forceinline__ divides(const divides&) {}
    };

    template <typename T> struct modulus : binary_function<T, T, T>
    {
        __device__ __forceinline__ T operator ()(typename TypeTraits<T>::ParameterType a,
                                                 typename TypeTraits<T>::ParameterType b) const
        {
            return a % b;
        }
        __host__ __device__ __forceinline__ modulus() {}
        __host__ __device__ __forceinline__ modulus(const modulus&) {}
    };

    template <typename T> struct negate : unary_function<T, T>
    {
        __device__ __forceinline__ T operator ()(typename TypeTraits<T>::ParameterType a) const
        {
            return -a;
        }
        __host__ __device__ __forceinline__ negate() {}
        __host__ __device__ __forceinline__ negate(const negate&) {}
    };

    // Comparison Operations
    template <typename T> struct equal_to : binary_function<T, T, bool>
    {
        __device__ __forceinline__ bool operator ()(typename TypeTraits<T>::ParameterType a,
                                                    typename TypeTraits<T>::ParameterType b) const
        {
            return a == b;
        }
        __host__ __device__ __forceinline__ equal_to() {}
        __host__ __device__ __forceinline__ equal_to(const equal_to&) {}
    };

    template <typename T> struct not_equal_to : binary_function<T, T, bool>
    {
        __device__ __forceinline__ bool operator ()(typename TypeTraits<T>::ParameterType a,
                                                    typename TypeTraits<T>::ParameterType b) const
        {
            return a != b;
        }
        __host__ __device__ __forceinline__ not_equal_to() {}
        __host__ __device__ __forceinline__ not_equal_to(const not_equal_to&) {}
    };

    template <typename T> struct greater : binary_function<T, T, bool>
    {
        __device__ __forceinline__ bool operator ()(typename TypeTraits<T>::ParameterType a,
                                                    typename TypeTraits<T>::ParameterType b) const
        {
            return a > b;
        }
        __host__ __device__ __forceinline__ greater() {}
        __host__ __device__ __forceinline__ greater(const greater&) {}
    };

    template <typename T> struct less : binary_function<T, T, bool>
    {
        __device__ __forceinline__ bool operator ()(typename TypeTraits<T>::ParameterType a,
                                                    typename TypeTraits<T>::ParameterType b) const
        {
            return a < b;
        }
        __host__ __device__ __forceinline__ less() {}
        __host__ __device__ __forceinline__ less(const less&) {}
    };

    template <typename T> struct greater_equal : binary_function<T, T, bool>
    {
        __device__ __forceinline__ bool operator ()(typename TypeTraits<T>::ParameterType a,
                                                    typename TypeTraits<T>::ParameterType b) const
        {
            return a >= b;
        }
        __host__ __device__ __forceinline__ greater_equal() {}
        __host__ __device__ __forceinline__ greater_equal(const greater_equal&) {}
    };

    template <typename T> struct less_equal : binary_function<T, T, bool>
    {
        __device__ __forceinline__ bool operator ()(typename TypeTraits<T>::ParameterType a,
                                                    typename TypeTraits<T>::ParameterType b) const
        {
            return a <= b;
        }
        __host__ __device__ __forceinline__ less_equal() {}
        __host__ __device__ __forceinline__ less_equal(const less_equal&) {}
    };

    // Logical Operations
    template <typename T> struct logical_and : binary_function<T, T, bool>
    {
        __device__ __forceinline__ bool operator ()(typename TypeTraits<T>::ParameterType a,
                                                    typename TypeTraits<T>::ParameterType b) const
        {
            return a && b;
        }
        __host__ __device__ __forceinline__ logical_and() {}
        __host__ __device__ __forceinline__ logical_and(const logical_and&) {}
    };

    template <typename T> struct logical_or : binary_function<T, T, bool>
    {
        __device__ __forceinline__ bool operator ()(typename TypeTraits<T>::ParameterType a,
                                                    typename TypeTraits<T>::ParameterType b) const
        {
            return a || b;
        }
        __host__ __device__ __forceinline__ logical_or() {}
        __host__ __device__ __forceinline__ logical_or(const logical_or&) {}
    };

    template <typename T> struct logical_not : unary_function<T, bool>
    {
        __device__ __forceinline__ bool operator ()(typename TypeTraits<T>::ParameterType a) const
        {
            return !a;
        }
        __host__ __device__ __forceinline__ logical_not() {}
        __host__ __device__ __forceinline__ logical_not(const logical_not&) {}
    };

    // Bitwise Operations
    template <typename T> struct bit_and : binary_function<T, T, T>
    {
        __device__ __forceinline__ T operator ()(typename TypeTraits<T>::ParameterType a,
                                                 typename TypeTraits<T>::ParameterType b) const
        {
            return a & b;
        }
        __host__ __device__ __forceinline__ bit_and() {}
        __host__ __device__ __forceinline__ bit_and(const bit_and&) {}
    };

    template <typename T> struct bit_or : binary_function<T, T, T>
    {
        __device__ __forceinline__ T operator ()(typename TypeTraits<T>::ParameterType a,
                                                 typename TypeTraits<T>::ParameterType b) const
        {
            return a | b;
        }
        __host__ __device__ __forceinline__ bit_or() {}
        __host__ __device__ __forceinline__ bit_or(const bit_or&) {}
    };

    template <typename T> struct bit_xor : binary_function<T, T, T>
    {
        __device__ __forceinline__ T operator ()(typename TypeTraits<T>::ParameterType a,
                                                 typename TypeTraits<T>::ParameterType b) const
        {
            return a ^ b;
        }
        __host__ __device__ __forceinline__ bit_xor() {}
        __host__ __device__ __forceinline__ bit_xor(const bit_xor&) {}
    };

    template <typename T> struct bit_not : unary_function<T, T>
    {
        __device__ __forceinline__ T operator ()(typename TypeTraits<T>::ParameterType v) const
        {
            return ~v;
        }
        __host__ __device__ __forceinline__ bit_not() {}
        __host__ __device__ __forceinline__ bit_not(const bit_not&) {}
    };

    // Generalized Identity Operations
    template <typename T> struct identity : unary_function<T, T>
    {
        __device__ __forceinline__ typename TypeTraits<T>::ParameterType operator()(typename TypeTraits<T>::ParameterType x) const
        {
            return x;
        }
        __host__ __device__ __forceinline__ identity() {}
        __host__ __device__ __forceinline__ identity(const identity&) {}
    };

    template <typename T1, typename T2> struct project1st : binary_function<T1, T2, T1>
    {
        __device__ __forceinline__ typename TypeTraits<T1>::ParameterType operator()(typename TypeTraits<T1>::ParameterType lhs, typename TypeTraits<T2>::ParameterType rhs) const
        {
            return lhs;
        }
        __host__ __device__ __forceinline__ project1st() {}
        __host__ __device__ __forceinline__ project1st(const project1st&) {}
    };

    template <typename T1, typename T2> struct project2nd : binary_function<T1, T2, T2>
    {
        __device__ __forceinline__ typename TypeTraits<T2>::ParameterType operator()(typename TypeTraits<T1>::ParameterType lhs, typename TypeTraits<T2>::ParameterType rhs) const
        {
            return rhs;
        }
        __host__ __device__ __forceinline__ project2nd() {}
        __host__ __device__ __forceinline__ project2nd(const project2nd&) {}
    };

    // Min/Max Operations

#define OPENCV_CUDA_IMPLEMENT_MINMAX(name, type, op) \
    template <> struct name<type> : binary_function<type, type, type> \
    { \
        __device__ __forceinline__ type operator()(type lhs, type rhs) const {return op(lhs, rhs);} \
        __host__ __device__ __forceinline__ name() {}\
        __host__ __device__ __forceinline__ name(const name&) {}\
    };

    template <typename T> struct maximum : binary_function<T, T, T>
    {
        __device__ __forceinline__ T operator()(typename TypeTraits<T>::ParameterType lhs, typename TypeTraits<T>::ParameterType rhs) const
        {
            return max(lhs, rhs);
        }
        __host__ __device__ __forceinline__ maximum() {}
        __host__ __device__ __forceinline__ maximum(const maximum&) {}
    };

    OPENCV_CUDA_IMPLEMENT_MINMAX(maximum, uchar, ::max)
    OPENCV_CUDA_IMPLEMENT_MINMAX(maximum, schar, ::max)
    OPENCV_CUDA_IMPLEMENT_MINMAX(maximum, char, ::max)
    OPENCV_CUDA_IMPLEMENT_MINMAX(maximum, ushort, ::max)
    OPENCV_CUDA_IMPLEMENT_MINMAX(maximum, short, ::max)
    OPENCV_CUDA_IMPLEMENT_MINMAX(maximum, int, ::max)
    OPENCV_CUDA_IMPLEMENT_MINMAX(maximum, uint, ::max)
    OPENCV_CUDA_IMPLEMENT_MINMAX(maximum, float, ::fmax)
    OPENCV_CUDA_IMPLEMENT_MINMAX(maximum, double, ::fmax)

    template <typename T> struct minimum : binary_function<T, T, T>
    {
        __device__ __forceinline__ T operator()(typename TypeTraits<T>::ParameterType lhs, typename TypeTraits<T>::ParameterType rhs) const
        {
            return min(lhs, rhs);
        }
        __host__ __device__ __forceinline__ minimum() {}
        __host__ __device__ __forceinline__ minimum(const minimum&) {}
    };

    OPENCV_CUDA_IMPLEMENT_MINMAX(minimum, uchar, ::min)
    OPENCV_CUDA_IMPLEMENT_MINMAX(minimum, schar, ::min)
    OPENCV_CUDA_IMPLEMENT_MINMAX(minimum, char, ::min)
    OPENCV_CUDA_IMPLEMENT_MINMAX(minimum, ushort, ::min)
    OPENCV_CUDA_IMPLEMENT_MINMAX(minimum, short, ::min)
    OPENCV_CUDA_IMPLEMENT_MINMAX(minimum, int, ::min)
    OPENCV_CUDA_IMPLEMENT_MINMAX(minimum, uint, ::min)
    OPENCV_CUDA_IMPLEMENT_MINMAX(minimum, float, ::fmin)
    OPENCV_CUDA_IMPLEMENT_MINMAX(minimum, double, ::fmin)

#undef OPENCV_CUDA_IMPLEMENT_MINMAX

    // Math functions

    template <typename T> struct abs_func : unary_function<T, T>
    {
        __device__ __forceinline__ T operator ()(typename TypeTraits<T>::ParameterType x) const
        {
            return abs(x);
        }

        __host__ __device__ __forceinline__ abs_func() {}
        __host__ __device__ __forceinline__ abs_func(const abs_func&) {}
    };
    template <> struct abs_func<unsigned char> : unary_function<unsigned char, unsigned char>
    {
        __device__ __forceinline__ unsigned char operator ()(unsigned char x) const
        {
            return x;
        }

        __host__ __device__ __forceinline__ abs_func() {}
        __host__ __device__ __forceinline__ abs_func(const abs_func&) {}
    };
    template <> struct abs_func<signed char> : unary_function<signed char, signed char>
    {
        __device__ __forceinline__ signed char operator ()(signed char x) const
        {
            return ::abs((int)x);
        }

        __host__ __device__ __forceinline__ abs_func() {}
        __host__ __device__ __forceinline__ abs_func(const abs_func&) {}
    };
    template <> struct abs_func<char> : unary_function<char, char>
    {
        __device__ __forceinline__ char operator ()(char x) const
        {
            return ::abs((int)x);
        }

        __host__ __device__ __forceinline__ abs_func() {}
        __host__ __device__ __forceinline__ abs_func(const abs_func&) {}
    };
    template <> struct abs_func<unsigned short> : unary_function<unsigned short, unsigned short>
    {
        __device__ __forceinline__ unsigned short operator ()(unsigned short x) const
        {
            return x;
        }

        __host__ __device__ __forceinline__ abs_func() {}
        __host__ __device__ __forceinline__ abs_func(const abs_func&) {}
    };
    template <> struct abs_func<short> : unary_function<short, short>
    {
        __device__ __forceinline__ short operator ()(short x) const
        {
            return ::abs((int)x);
        }

        __host__ __device__ __forceinline__ abs_func() {}
        __host__ __device__ __forceinline__ abs_func(const abs_func&) {}
    };
    template <> struct abs_func<unsigned int> : unary_function<unsigned int, unsigned int>
    {
        __device__ __forceinline__ unsigned int operator ()(unsigned int x) const
        {
            return x;
        }

        __host__ __device__ __forceinline__ abs_func() {}
        __host__ __device__ __forceinline__ abs_func(const abs_func&) {}
    };
    template <> struct abs_func<int> : unary_function<int, int>
    {
        __device__ __forceinline__ int operator ()(int x) const
        {
            return ::abs(x);
        }

        __host__ __device__ __forceinline__ abs_func() {}
        __host__ __device__ __forceinline__ abs_func(const abs_func&) {}
    };
    template <> struct abs_func<float> : unary_function<float, float>
    {
        __device__ __forceinline__ float operator ()(float x) const
        {
            return ::fabsf(x);
        }

        __host__ __device__ __forceinline__ abs_func() {}
        __host__ __device__ __forceinline__ abs_func(const abs_func&) {}
    };
    template <> struct abs_func<double> : unary_function<double, double>
    {
        __device__ __forceinline__ double operator ()(double x) const
        {
            return ::fabs(x);
        }

        __host__ __device__ __forceinline__ abs_func() {}
        __host__ __device__ __forceinline__ abs_func(const abs_func&) {}
    };

#define OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(name, func) \
    template <typename T> struct name ## _func : unary_function<T, float> \
    { \
        __device__ __forceinline__ float operator ()(typename TypeTraits<T>::ParameterType v) const \
        { \
            return func ## f(v); \
        } \
        __host__ __device__ __forceinline__ name ## _func() {} \
        __host__ __device__ __forceinline__ name ## _func(const name ## _func&) {} \
    }; \
    template <> struct name ## _func<double> : unary_function<double, double> \
    { \
        __device__ __forceinline__ double operator ()(double v) const \
        { \
            return func(v); \
        } \
        __host__ __device__ __forceinline__ name ## _func() {} \
        __host__ __device__ __forceinline__ name ## _func(const name ## _func&) {} \
    };

#define OPENCV_CUDA_IMPLEMENT_BIN_FUNCTOR(name, func) \
    template <typename T> struct name ## _func : binary_function<T, T, float> \
    { \
        __device__ __forceinline__ float operator ()(typename TypeTraits<T>::ParameterType v1, typename TypeTraits<T>::ParameterType v2) const \
        { \
            return func ## f(v1, v2); \
        } \
        __host__ __device__ __forceinline__ name ## _func() {} \
        __host__ __device__ __forceinline__ name ## _func(const name ## _func&) {} \
    }; \
    template <> struct name ## _func<double> : binary_function<double, double, double> \
    { \
        __device__ __forceinline__ double operator ()(double v1, double v2) const \
        { \
            return func(v1, v2); \
        } \
        __host__ __device__ __forceinline__ name ## _func() {} \
        __host__ __device__ __forceinline__ name ## _func(const name ## _func&) {} \
    };

    OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(sqrt, ::sqrt)
    OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(exp, ::exp)
    OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(exp2, ::exp2)
    OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(exp10, ::exp10)
    OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(log, ::log)
    OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(log2, ::log2)
    OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(log10, ::log10)
    OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(sin, ::sin)
    OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(cos, ::cos)
    OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(tan, ::tan)
    OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(asin, ::asin)
    OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(acos, ::acos)
    OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(atan, ::atan)
    OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(sinh, ::sinh)
    OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(cosh, ::cosh)
    OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(tanh, ::tanh)
    OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(asinh, ::asinh)
    OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(acosh, ::acosh)
    OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(atanh, ::atanh)

    OPENCV_CUDA_IMPLEMENT_BIN_FUNCTOR(hypot, ::hypot)
    OPENCV_CUDA_IMPLEMENT_BIN_FUNCTOR(atan2, ::atan2)
    OPENCV_CUDA_IMPLEMENT_BIN_FUNCTOR(pow, ::pow)

    #undef OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR
    #undef OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR_NO_DOUBLE
    #undef OPENCV_CUDA_IMPLEMENT_BIN_FUNCTOR

    template<typename T> struct hypot_sqr_func : binary_function<T, T, float>
    {
        __device__ __forceinline__ T operator ()(typename TypeTraits<T>::ParameterType src1, typename TypeTraits<T>::ParameterType src2) const
        {
            return src1 * src1 + src2 * src2;
        }
        __host__ __device__ __forceinline__ hypot_sqr_func() {}
        __host__ __device__ __forceinline__ hypot_sqr_func(const hypot_sqr_func&) {}
    };

    // Saturate Cast Functor
    template <typename T, typename D> struct saturate_cast_func : unary_function<T, D>
    {
        __device__ __forceinline__ D operator ()(typename TypeTraits<T>::ParameterType v) const
        {
            return saturate_cast<D>(v);
        }
        __host__ __device__ __forceinline__ saturate_cast_func() {}
        __host__ __device__ __forceinline__ saturate_cast_func(const saturate_cast_func&) {}
    };

    // Threshold Functors
    template <typename T> struct thresh_binary_func : unary_function<T, T>
    {
        __host__ __device__ __forceinline__ thresh_binary_func(T thresh_, T maxVal_) : thresh(thresh_), maxVal(maxVal_) {}

        __device__ __forceinline__ T operator()(typename TypeTraits<T>::ParameterType src) const
        {
            return (src > thresh) * maxVal;
        }

        __host__ __device__ __forceinline__ thresh_binary_func() {}
        __host__ __device__ __forceinline__ thresh_binary_func(const thresh_binary_func& other)
            : thresh(other.thresh), maxVal(other.maxVal) {}

        T thresh;
        T maxVal;
    };

    template <typename T> struct thresh_binary_inv_func : unary_function<T, T>
    {
        __host__ __device__ __forceinline__ thresh_binary_inv_func(T thresh_, T maxVal_) : thresh(thresh_), maxVal(maxVal_) {}

        __device__ __forceinline__ T operator()(typename TypeTraits<T>::ParameterType src) const
        {
            return (src <= thresh) * maxVal;
        }

        __host__ __device__ __forceinline__ thresh_binary_inv_func() {}
        __host__ __device__ __forceinline__ thresh_binary_inv_func(const thresh_binary_inv_func& other)
            : thresh(other.thresh), maxVal(other.maxVal) {}

        T thresh;
        T maxVal;
    };

    template <typename T> struct thresh_trunc_func : unary_function<T, T>
    {
        explicit __host__ __device__ __forceinline__ thresh_trunc_func(T thresh_, T maxVal_ = 0) : thresh(thresh_) {(void)maxVal_;}

        __device__ __forceinline__ T operator()(typename TypeTraits<T>::ParameterType src) const
        {
            return minimum<T>()(src, thresh);
        }

        __host__ __device__ __forceinline__ thresh_trunc_func() {}
        __host__ __device__ __forceinline__ thresh_trunc_func(const thresh_trunc_func& other)
            : thresh(other.thresh) {}

        T thresh;
    };

    template <typename T> struct thresh_to_zero_func : unary_function<T, T>
    {
        explicit __host__ __device__ __forceinline__ thresh_to_zero_func(T thresh_, T maxVal_ = 0) : thresh(thresh_) {(void)maxVal_;}

        __device__ __forceinline__ T operator()(typename TypeTraits<T>::ParameterType src) const
        {
            return (src > thresh) * src;
        }

        __host__ __device__ __forceinline__ thresh_to_zero_func() {}
       __host__  __device__ __forceinline__ thresh_to_zero_func(const thresh_to_zero_func& other)
            : thresh(other.thresh) {}

        T thresh;
    };

    template <typename T> struct thresh_to_zero_inv_func : unary_function<T, T>
    {
        explicit __host__ __device__ __forceinline__ thresh_to_zero_inv_func(T thresh_, T maxVal_ = 0) : thresh(thresh_) {(void)maxVal_;}

        __device__ __forceinline__ T operator()(typename TypeTraits<T>::ParameterType src) const
        {
            return (src <= thresh) * src;
        }

        __host__ __device__ __forceinline__ thresh_to_zero_inv_func() {}
        __host__ __device__ __forceinline__ thresh_to_zero_inv_func(const thresh_to_zero_inv_func& other)
            : thresh(other.thresh) {}

        T thresh;
    };

    // Function Object Adaptors
    template <typename Predicate> struct unary_negate : unary_function<typename Predicate::argument_type, bool>
    {
      explicit __host__ __device__ __forceinline__ unary_negate(const Predicate& p) : pred(p) {}

      __device__ __forceinline__ bool operator()(typename TypeTraits<typename Predicate::argument_type>::ParameterType x) const
      {
          return !pred(x);
      }

      __host__ __device__ __forceinline__ unary_negate() {}
      __host__ __device__ __forceinline__ unary_negate(const unary_negate& other) : pred(other.pred) {}

      Predicate pred;
    };

    template <typename Predicate> __host__ __device__ __forceinline__ unary_negate<Predicate> not1(const Predicate& pred)
    {
        return unary_negate<Predicate>(pred);
    }

    template <typename Predicate> struct binary_negate : binary_function<typename Predicate::first_argument_type, typename Predicate::second_argument_type, bool>
    {
        explicit __host__ __device__ __forceinline__ binary_negate(const Predicate& p) : pred(p) {}

        __device__ __forceinline__ bool operator()(typename TypeTraits<typename Predicate::first_argument_type>::ParameterType x,
                                                   typename TypeTraits<typename Predicate::second_argument_type>::ParameterType y) const
        {
            return !pred(x,y);
        }

        __host__ __device__ __forceinline__ binary_negate() {}
        __host__ __device__ __forceinline__ binary_negate(const binary_negate& other) : pred(other.pred) {}

        Predicate pred;
    };

    template <typename BinaryPredicate> __host__ __device__ __forceinline__ binary_negate<BinaryPredicate> not2(const BinaryPredicate& pred)
    {
        return binary_negate<BinaryPredicate>(pred);
    }

    template <typename Op> struct binder1st : unary_function<typename Op::second_argument_type, typename Op::result_type>
    {
        __host__ __device__ __forceinline__ binder1st(const Op& op_, const typename Op::first_argument_type& arg1_) : op(op_), arg1(arg1_) {}

        __device__ __forceinline__ typename Op::result_type operator ()(typename TypeTraits<typename Op::second_argument_type>::ParameterType a) const
        {
            return op(arg1, a);
        }

        __host__ __device__ __forceinline__ binder1st() {}
        __host__ __device__ __forceinline__ binder1st(const binder1st& other) : op(other.op), arg1(other.arg1) {}

        Op op;
        typename Op::first_argument_type arg1;
    };

    template <typename Op, typename T> __host__ __device__ __forceinline__ binder1st<Op> bind1st(const Op& op, const T& x)
    {
        return binder1st<Op>(op, typename Op::first_argument_type(x));
    }

    template <typename Op> struct binder2nd : unary_function<typename Op::first_argument_type, typename Op::result_type>
    {
        __host__ __device__ __forceinline__ binder2nd(const Op& op_, const typename Op::second_argument_type& arg2_) : op(op_), arg2(arg2_) {}

        __forceinline__ __device__ typename Op::result_type operator ()(typename TypeTraits<typename Op::first_argument_type>::ParameterType a) const
        {
            return op(a, arg2);
        }

        __host__ __device__ __forceinline__ binder2nd() {}
        __host__ __device__ __forceinline__ binder2nd(const binder2nd& other) : op(other.op), arg2(other.arg2) {}

        Op op;
        typename Op::second_argument_type arg2;
    };

    template <typename Op, typename T> __host__ __device__ __forceinline__ binder2nd<Op> bind2nd(const Op& op, const T& x)
    {
        return binder2nd<Op>(op, typename Op::second_argument_type(x));
    }

    // Functor Traits
    template <typename F> struct IsUnaryFunction
    {
        typedef char Yes;
        struct No {Yes a[2];};

        template <typename T, typename D> static Yes check(unary_function<T, D>);
        static No check(...);

        static F makeF();

        enum { value = (sizeof(check(makeF())) == sizeof(Yes)) };
    };

    template <typename F> struct IsBinaryFunction
    {
        typedef char Yes;
        struct No {Yes a[2];};

        template <typename T1, typename T2, typename D> static Yes check(binary_function<T1, T2, D>);
        static No check(...);

        static F makeF();

        enum { value = (sizeof(check(makeF())) == sizeof(Yes)) };
    };

    namespace functional_detail
    {
        template <size_t src_elem_size, size_t dst_elem_size> struct UnOpShift { enum { shift = 1 }; };
        template <size_t src_elem_size> struct UnOpShift<src_elem_size, 1> { enum { shift = 4 }; };
        template <size_t src_elem_size> struct UnOpShift<src_elem_size, 2> { enum { shift = 2 }; };

        template <typename T, typename D> struct DefaultUnaryShift
        {
            enum { shift = UnOpShift<sizeof(T), sizeof(D)>::shift };
        };

        template <size_t src_elem_size1, size_t src_elem_size2, size_t dst_elem_size> struct BinOpShift { enum { shift = 1 }; };
        template <size_t src_elem_size1, size_t src_elem_size2> struct BinOpShift<src_elem_size1, src_elem_size2, 1> { enum { shift = 4 }; };
        template <size_t src_elem_size1, size_t src_elem_size2> struct BinOpShift<src_elem_size1, src_elem_size2, 2> { enum { shift = 2 }; };

        template <typename T1, typename T2, typename D> struct DefaultBinaryShift
        {
            enum { shift = BinOpShift<sizeof(T1), sizeof(T2), sizeof(D)>::shift };
        };

        template <typename Func, bool unary = IsUnaryFunction<Func>::value> struct ShiftDispatcher;
        template <typename Func> struct ShiftDispatcher<Func, true>
        {
            enum { shift = DefaultUnaryShift<typename Func::argument_type, typename Func::result_type>::shift };
        };
        template <typename Func> struct ShiftDispatcher<Func, false>
        {
            enum { shift = DefaultBinaryShift<typename Func::first_argument_type, typename Func::second_argument_type, typename Func::result_type>::shift };
        };
    }

    template <typename Func> struct DefaultTransformShift
    {
        enum { shift = functional_detail::ShiftDispatcher<Func>::shift };
    };

    template <typename Func> struct DefaultTransformFunctorTraits
    {
        enum { simple_block_dim_x = 16 };
        enum { simple_block_dim_y = 16 };

        enum { smart_block_dim_x = 16 };
        enum { smart_block_dim_y = 16 };
        enum { smart_shift = DefaultTransformShift<Func>::shift };
    };

    template <typename Func> struct TransformFunctorTraits : DefaultTransformFunctorTraits<Func> {};

#define OPENCV_CUDA_TRANSFORM_FUNCTOR_TRAITS(type) \
    template <> struct TransformFunctorTraits< type > : DefaultTransformFunctorTraits< type >
}}} // namespace cv { namespace cuda { namespace cudev

//! @endcond

#endif // OPENCV_CUDA_FUNCTIONAL_HPP