This file is indexed.

/usr/include/opencv2/stereo/descriptor.hpp is in libopencv-contrib-dev 3.2.0+dfsg-4build2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
//By downloading, copying, installing or using the software you agree to this license.
//If you do not agree to this license, do not download, install,
//copy or use the software.
//
//
//                          License Agreement
//               For Open Source Computer Vision Library
//                       (3-clause BSD License)
//
//Copyright (C) 2000-2015, Intel Corporation, all rights reserved.
//Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
//Copyright (C) 2009-2015, NVIDIA Corporation, all rights reserved.
//Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved.
//Copyright (C) 2015, OpenCV Foundation, all rights reserved.
//Copyright (C) 2015, Itseez Inc., all rights reserved.
//Third party copyrights are property of their respective owners.
//
//Redistribution and use in source and binary forms, with or without modification,
//are permitted provided that the following conditions are met:
//
//  * Redistributions of source code must retain the above copyright notice,
//    this list of conditions and the following disclaimer.
//
//  * Redistributions in binary form must reproduce the above copyright notice,
//    this list of conditions and the following disclaimer in the documentation
//    and/or other materials provided with the distribution.
//
//  * Neither the names of the copyright holders nor the names of the contributors
//    may be used to endorse or promote products derived from this software
//    without specific prior written permission.
//
//This software is provided by the copyright holders and contributors "as is" and
//any express or implied warranties, including, but not limited to, the implied
//warranties of merchantability and fitness for a particular purpose are disclaimed.
//In no event shall copyright holders or contributors be liable for any direct,
//indirect, incidental, special, exemplary, or consequential damages
//(including, but not limited to, procurement of substitute goods or services;
//loss of use, data, or profits; or business interruption) however caused
//and on any theory of liability, whether in contract, strict liability,
//or tort (including negligence or otherwise) arising in any way out of
//the use of this software, even if advised of the possibility of such damage.

/*****************************************************************************************************************\
*   The interface contains the main descriptors that will be implemented in the descriptor class                  *
\*****************************************************************************************************************/

#include <stdint.h>
#ifndef _OPENCV_DESCRIPTOR_HPP_
#define _OPENCV_DESCRIPTOR_HPP_
#ifdef __cplusplus

namespace cv
{
    namespace stereo
    {
        //types of supported kernels
        enum {
            CV_DENSE_CENSUS, CV_SPARSE_CENSUS,
            CV_CS_CENSUS, CV_MODIFIED_CS_CENSUS, CV_MODIFIED_CENSUS_TRANSFORM,
            CV_MEAN_VARIATION, CV_STAR_KERNEL
        };
        //!Mean Variation is a robust kernel that compares a pixel
        //!not just with the center but also with the mean of the window
        template<int num_images>
        struct MVKernel
        {
            uint8_t *image[num_images];
            int *integralImage[num_images];
            int stop;
            MVKernel(){}
            MVKernel(uint8_t **images, int **integral)
            {
                for(int i = 0; i < num_images; i++)
                {
                    image[i] = images[i];
                    integralImage[i] = integral[i];
                }
                stop = num_images;
            }
            void operator()(int rrWidth,int w2, int rWidth, int jj, int j, int c[num_images]) const
            {
                (void)w2;
                for (int i = 0; i < stop; i++)
                {
                    if (image[i][rrWidth + jj] > image[i][rWidth + j])
                    {
                        c[i] = c[i] + 1;
                    }
                    c[i] = c[i] << 1;
                    if (integralImage[i][rrWidth + jj] > image[i][rWidth + j])
                    {
                        c[i] = c[i] + 1;
                    }
                    c[i] = c[i] << 1;
                }
            }
        };
        //!Compares pixels from a patch giving high weights to pixels in which
        //!the intensity is higher. The other pixels receive a lower weight
        template <int num_images>
        struct MCTKernel
        {
            uint8_t *image[num_images];
            int t,imageStop;
            MCTKernel(){}
            MCTKernel(uint8_t ** images, int threshold)
            {
                for(int i = 0; i < num_images; i++)
                {
                    image[i] = images[i];
                }
                imageStop = num_images;
                t = threshold;
            }
            void operator()(int rrWidth,int w2, int rWidth, int jj, int j, int c[num_images]) const
            {
                (void)w2;
                for(int i = 0; i < imageStop; i++)
                {
                    if (image[i][rrWidth + jj] > image[i][rWidth + j] - t)
                    {
                        c[i] = c[i] << 1;
                        c[i] = c[i] + 1;
                        c[i] = c[i] << 1;
                        c[i] = c[i] + 1;
                    }
                    else if (image[i][rWidth + j] - t < image[i][rrWidth + jj] && image[i][rWidth + j] + t >= image[i][rrWidth + jj])
                    {
                        c[i] = c[i] << 2;
                        c[i] = c[i] + 1;
                    }
                    else
                    {
                        c[i] <<= 2;
                    }
                }
            }
        };
        //!A madified cs census that compares a pixel with the imediat neightbour starting
        //!from the center
        template<int num_images>
        struct ModifiedCsCensus
        {
            uint8_t *image[num_images];
            int n2;
            int imageStop;
            ModifiedCsCensus(){}
            ModifiedCsCensus(uint8_t **images, int ker)
            {
                for(int i = 0; i < num_images; i++)
                    image[i] = images[i];
                imageStop = num_images;
                n2 = ker;
            }
            void operator()(int rrWidth,int w2, int rWidth, int jj, int j, int c[num_images]) const
            {
                (void)j;
                (void)rWidth;
                for(int i = 0; i < imageStop; i++)
                {
                    if (image[i][(rrWidth + jj)] > image[i][(w2 + (jj + n2))])
                    {
                        c[i] = c[i] + 1;
                    }
                    c[i] = c[i] * 2;
                }
            }
        };
        //!A kernel in which a pixel is compared with the center of the window
        template<int num_images>
        struct CensusKernel
        {
            uint8_t *image[num_images];
            int imageStop;
            CensusKernel(){}
            CensusKernel(uint8_t **images)
            {
                for(int i = 0; i < num_images; i++)
                    image[i] = images[i];
                imageStop = num_images;
            }
            void operator()(int rrWidth,int w2, int rWidth, int jj, int j, int c[num_images]) const
            {
                (void)w2;
                for(int i = 0; i < imageStop; i++)
                {
                    ////compare a pixel with the center from the kernel
                    if (image[i][rrWidth + jj] > image[i][rWidth + j])
                    {
                        c[i] += 1;
                    }
                    c[i] <<= 1;
                }
            }
        };
        //template clas which efficiently combines the descriptors
        template <int step_start, int step_end, int step_inc,int nr_img, typename Kernel>
        class CombinedDescriptor:public ParallelLoopBody
        {
        private:
            int width, height,n2;
            int stride_;
            int *dst[nr_img];
            Kernel kernel_;
            int n2_stop;
        public:
            CombinedDescriptor(int w, int h,int stride, int k2, int **distance, Kernel kernel,int k2Stop)
            {
                width = w;
                height = h;
                n2 = k2;
                stride_ = stride;
                for(int i = 0; i < nr_img; i++)
                    dst[i] = distance[i];
                kernel_ = kernel;
                n2_stop = k2Stop;
            }
            void operator()(const cv::Range &r) const {
                for (int i = r.start; i <= r.end ; i++)
                {
                    int rWidth = i * stride_;
                    for (int j = n2 + 2; j <= width - n2 - 2; j++)
                    {
                        int c[nr_img];
                        memset(c,0,nr_img);
                        for(int step = step_start; step <= step_end; step += step_inc)
                        {
                            for (int ii = - n2; ii <= + n2_stop; ii += step)
                            {
                                int rrWidth = (ii + i) * stride_;
                                int rrWidthC = (ii + i + n2) * stride_;
                                for (int jj = j - n2; jj <= j + n2; jj += step)
                                {
                                    if (ii != i || jj != j)
                                    {
                                        kernel_(rrWidth,rrWidthC, rWidth, jj, j,c);
                                    }
                                }
                            }
                        }
                        for(int l = 0; l < nr_img; l++)
                            dst[l][rWidth + j] = c[l];
                    }
                }
            }
        };
        //!calculate the mean of every windowSizexWindwoSize block from the integral Image
        //!this is a preprocessing for MV kernel
        class MeanKernelIntegralImage : public ParallelLoopBody
        {
        private:
            int *img;
            int windowSize,width;
            float scalling;
            int *c;
        public:
            MeanKernelIntegralImage(const cv::Mat &image, int window,float scale, int *cost):
                img((int *)image.data),windowSize(window) ,width(image.cols) ,scalling(scale) , c(cost){};
            void operator()(const cv::Range &r) const{
                for (int i = r.start; i <= r.end; i++)
                {
                    int iw = i * width;
                    for (int j = windowSize + 1; j <= width - windowSize - 1; j++)
                    {
                        c[iw + j] = (int)((img[(i + windowSize - 1) * width + j + windowSize - 1] + img[(i - windowSize - 1) * width + j - windowSize - 1]
                        - img[(i + windowSize) * width + j - windowSize] - img[(i - windowSize) * width + j + windowSize]) * scalling);
                    }
                }
            }
        };
        //!implementation for the star kernel descriptor
        template<int num_images>
        class StarKernelCensus:public ParallelLoopBody
        {
        private:
            uint8_t *image[num_images];
            int *dst[num_images];
            int n2, width, height, im_num,stride_;
        public:
            StarKernelCensus(const cv::Mat *img, int k2, int **distance)
            {
                for(int i = 0; i < num_images; i++)
                {
                    image[i] = img[i].data;
                    dst[i] = distance[i];
                }
                n2 = k2;
                width = img[0].cols;
                height = img[0].rows;
                im_num = num_images;
                stride_ = (int)img[0].step;
            }
            void operator()(const cv::Range &r) const {
                for (int i = r.start; i <= r.end ; i++)
                {
                    int rWidth = i * stride_;
                    for (int j = n2; j <= width - n2; j++)
                    {
                        for(int d = 0 ; d < im_num; d++)
                        {
                            int c = 0;
                            for(int step = 4; step > 0; step--)
                            {
                                for (int ii = i - step; ii <= i + step; ii += step)
                                {
                                    int rrWidth = ii * stride_;
                                    for (int jj = j - step; jj <= j + step; jj += step)
                                    {
                                        if (image[d][rrWidth + jj] > image[d][rWidth + j])
                                        {
                                            c = c + 1;
                                        }
                                        c = c * 2;
                                    }
                                }
                            }
                            for (int ii = -1; ii <= +1; ii++)
                            {
                                int rrWidth = (ii + i) * stride_;
                                if (i == -1)
                                {
                                    if (ii + i != i)
                                    {
                                        if (image[d][rrWidth + j] > image[d][rWidth + j])
                                        {
                                            c = c + 1;
                                        }
                                        c = c * 2;
                                    }
                                }
                                else if (i == 0)
                                {
                                    for (int j2 = -1; j2 <= 1; j2 += 2)
                                    {
                                        if (ii + i != i)
                                        {
                                            if (image[d][rrWidth + j + j2] > image[d][rWidth + j])
                                            {
                                                c = c + 1;
                                            }
                                            c = c * 2;
                                        }
                                    }
                                }
                                else
                                {
                                    if (ii + i != i)
                                    {
                                        if (image[d][rrWidth + j] > image[d][rWidth + j])
                                        {
                                            c = c + 1;
                                        }
                                        c = c * 2;
                                    }
                                }
                            }
                            dst[d][rWidth + j] = c;
                        }
                    }
                }
            }
        };
        //!paralel implementation of the center symetric census
        template <int num_images>
        class SymetricCensus:public ParallelLoopBody
        {
        private:
            uint8_t *image[num_images];
            int *dst[num_images];
            int n2, width, height, im_num,stride_;
        public:
            SymetricCensus(const cv::Mat *img, int k2, int **distance)
            {
                for(int i = 0; i < num_images; i++)
                {
                    image[i] = img[i].data;
                    dst[i] = distance[i];
                }
                n2 = k2;
                width = img[0].cols;
                height = img[0].rows;
                im_num = num_images;
                stride_ = (int)img[0].step;
            }
            void operator()(const cv::Range &r) const {
                for (int i = r.start; i <= r.end ; i++)
                {
                    int distV = i*stride_;
                    for (int j = n2; j <= width - n2; j++)
                    {
                        for(int d = 0; d < im_num; d++)
                        {
                            int c = 0;
                            //the classic center symetric census which compares the curent pixel with its symetric not its center.
                            for (int ii = -n2; ii <= 0; ii++)
                            {
                                int rrWidth = (ii + i) * stride_;
                                for (int jj = -n2; jj <= +n2; jj++)
                                {
                                    if (image[d][(rrWidth + (jj + j))] > image[d][((ii * (-1) + i) * width + (-1 * jj) + j)])
                                    {
                                        c = c + 1;
                                    }
                                    c = c * 2;
                                    if(ii == 0 && jj < 0)
                                    {
                                        if (image[d][(i * width + (jj + j))] > image[d][(i * width + (-1 * jj) + j)])
                                        {
                                            c = c + 1;
                                        }
                                        c = c * 2;
                                    }
                                }
                            }
                            dst[d][(distV + j)] = c;
                        }
                    }
                }
            }
        };
        /**
        Two variations of census applied on input images
        Implementation of a census transform which is taking into account just the some pixels from the census kernel thus allowing for larger block sizes
        **/
        //void applyCensusOnImages(const cv::Mat &im1,const cv::Mat &im2, int kernelSize, cv::Mat &dist, cv::Mat &dist2, const int type);
        CV_EXPORTS void censusTransform(const cv::Mat &image1, const cv::Mat &image2, int kernelSize, cv::Mat &dist1, cv::Mat &dist2, const int type);
        //single image census transform
        CV_EXPORTS void censusTransform(const cv::Mat &image1, int kernelSize, cv::Mat &dist1, const int type);
        /**
        STANDARD_MCT - Modified census which is memorizing for each pixel 2 bits and includes a tolerance to the pixel comparison
        MCT_MEAN_VARIATION - Implementation of a modified census transform which is also taking into account the variation to the mean of the window not just the center pixel
        **/
        CV_EXPORTS void modifiedCensusTransform(const cv::Mat &img1, const cv::Mat &img2, int kernelSize, cv::Mat &dist1,cv::Mat &dist2, const int type, int t = 0 , const cv::Mat &IntegralImage1 = cv::Mat::zeros(100,100,CV_8UC1), const cv::Mat &IntegralImage2 = cv::Mat::zeros(100,100,CV_8UC1));
        //single version of modified census transform descriptor
        CV_EXPORTS void modifiedCensusTransform(const cv::Mat &img1, int kernelSize, cv::Mat &dist, const int type, int t = 0 ,const cv::Mat &IntegralImage = cv::Mat::zeros(100,100,CV_8UC1));
        /**The classical center symetric census
        A modified version of cs census which is comparing a pixel with its correspondent after the center
        **/
        CV_EXPORTS void symetricCensusTransform(const cv::Mat &img1, const cv::Mat &img2, int kernelSize, cv::Mat &dist1, cv::Mat &dist2, const int type);
        //single version of census transform
        CV_EXPORTS void symetricCensusTransform(const cv::Mat &img1, int kernelSize, cv::Mat &dist1, const int type);
        //in a 9x9 kernel only certain positions are choosen
        CV_EXPORTS void starCensusTransform(const cv::Mat &img1, const cv::Mat &img2, int kernelSize, cv::Mat &dist1,cv::Mat &dist2);
        //single image version of star kernel
        CV_EXPORTS void starCensusTransform(const cv::Mat &img1, int kernelSize, cv::Mat &dist);
        //integral image computation used in the Mean Variation Census Transform
        void imageMeanKernelSize(const cv::Mat &img, int windowSize, cv::Mat &c);
    }
}
#endif
#endif
/*End of file*/