This file is indexed.

/usr/include/ode/odemath.h is in libode-dev 2:0.14-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
/*************************************************************************
 *                                                                       *
 * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith.       *
 * All rights reserved.  Email: russ@q12.org   Web: www.q12.org          *
 *                                                                       *
 * This library is free software; you can redistribute it and/or         *
 * modify it under the terms of EITHER:                                  *
 *   (1) The GNU Lesser General Public License as published by the Free  *
 *       Software Foundation; either version 2.1 of the License, or (at  *
 *       your option) any later version. The text of the GNU Lesser      *
 *       General Public License is included with this library in the     *
 *       file LICENSE.TXT.                                               *
 *   (2) The BSD-style license that is included with this library in     *
 *       the file LICENSE-BSD.TXT.                                       *
 *                                                                       *
 * This library is distributed in the hope that it will be useful,       *
 * but WITHOUT ANY WARRANTY; without even the implied warranty of        *
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files    *
 * LICENSE.TXT and LICENSE-BSD.TXT for more details.                     *
 *                                                                       *
 *************************************************************************/

#ifndef _ODE_ODEMATH_H_
#define _ODE_ODEMATH_H_

#include <ode/common.h>

/*
 * macro to access elements i,j in an NxM matrix A, independent of the
 * matrix storage convention.
 */
#define dACCESS33(A,i,j) ((A)[(i)*4+(j)])

/*
 * Macro to test for valid floating point values
 */
#define dVALIDVEC3(v) (!(dIsNan(v[0]) || dIsNan(v[1]) || dIsNan(v[2])))
#define dVALIDVEC4(v) (!(dIsNan(v[0]) || dIsNan(v[1]) || dIsNan(v[2]) || dIsNan(v[3])))
#define dVALIDMAT3(m) (!(dIsNan(m[0]) || dIsNan(m[1]) || dIsNan(m[2]) || dIsNan(m[3]) || dIsNan(m[4]) || dIsNan(m[5]) || dIsNan(m[6]) || dIsNan(m[7]) || dIsNan(m[8]) || dIsNan(m[9]) || dIsNan(m[10]) || dIsNan(m[11])))
#define dVALIDMAT4(m) (!(dIsNan(m[0]) || dIsNan(m[1]) || dIsNan(m[2]) || dIsNan(m[3]) || dIsNan(m[4]) || dIsNan(m[5]) || dIsNan(m[6]) || dIsNan(m[7]) || dIsNan(m[8]) || dIsNan(m[9]) || dIsNan(m[10]) || dIsNan(m[11]) || dIsNan(m[12]) || dIsNan(m[13]) || dIsNan(m[14]) || dIsNan(m[15]) ))



/* Some vector math */
ODE_PURE_INLINE void dAddVectors3(dReal *res, const dReal *a, const dReal *b)
{
  const dReal res_0 = a[0] + b[0];
  const dReal res_1 = a[1] + b[1];
  const dReal res_2 = a[2] + b[2];
  /* Only assign after all the calculations are over to avoid incurring memory aliasing*/
  res[0] = res_0; res[1] = res_1; res[2] = res_2;
}

ODE_PURE_INLINE void dSubtractVectors3(dReal *res, const dReal *a, const dReal *b)
{
  const dReal res_0 = a[0] - b[0];
  const dReal res_1 = a[1] - b[1];
  const dReal res_2 = a[2] - b[2];
  /* Only assign after all the calculations are over to avoid incurring memory aliasing*/
  res[0] = res_0; res[1] = res_1; res[2] = res_2;
}

ODE_PURE_INLINE void dAddScaledVectors3(dReal *res, const dReal *a, const dReal *b, dReal a_scale, dReal b_scale)
{
  const dReal res_0 = a_scale * a[0] + b_scale * b[0];
  const dReal res_1 = a_scale * a[1] + b_scale * b[1];
  const dReal res_2 = a_scale * a[2] + b_scale * b[2];
  /* Only assign after all the calculations are over to avoid incurring memory aliasing*/
  res[0] = res_0; res[1] = res_1; res[2] = res_2;
}

ODE_PURE_INLINE void dScaleVector3(dReal *res, dReal nScale)
{
  res[0] *= nScale ;
  res[1] *= nScale ;
  res[2] *= nScale ;
}

ODE_PURE_INLINE void dNegateVector3(dReal *res)
{
  res[0] = -res[0];
  res[1] = -res[1];
  res[2] = -res[2];
}

ODE_PURE_INLINE void dCopyVector3(dReal *res, const dReal *a)
{
  const dReal res_0 = a[0];
  const dReal res_1 = a[1];
  const dReal res_2 = a[2];
  /* Only assign after all the calculations are over to avoid incurring memory aliasing*/
  res[0] = res_0; res[1] = res_1; res[2] = res_2;
}

ODE_PURE_INLINE void dCopyScaledVector3(dReal *res, const dReal *a, dReal nScale)
{
  const dReal res_0 = a[0] * nScale;
  const dReal res_1 = a[1] * nScale;
  const dReal res_2 = a[2] * nScale;
  /* Only assign after all the calculations are over to avoid incurring memory aliasing*/
  res[0] = res_0; res[1] = res_1; res[2] = res_2;
}

ODE_PURE_INLINE void dCopyNegatedVector3(dReal *res, const dReal *a)
{
  const dReal res_0 = -a[0];
  const dReal res_1 = -a[1];
  const dReal res_2 = -a[2];
  /* Only assign after all the calculations are over to avoid incurring memory aliasing*/
  res[0] = res_0; res[1] = res_1; res[2] = res_2;
}

ODE_PURE_INLINE void dCopyVector4(dReal *res, const dReal *a)
{
  const dReal res_0 = a[0];
  const dReal res_1 = a[1];
  const dReal res_2 = a[2];
  const dReal res_3 = a[3];
  /* Only assign after all the calculations are over to avoid incurring memory aliasing*/
  res[0] = res_0; res[1] = res_1; res[2] = res_2; res[3] = res_3;
}

ODE_PURE_INLINE void dCopyMatrix4x4(dReal *res, const dReal *a)
{
  dCopyVector4(res + 0, a + 0);
  dCopyVector4(res + 4, a + 4);
  dCopyVector4(res + 8, a + 8);
}

ODE_PURE_INLINE void dCopyMatrix4x3(dReal *res, const dReal *a)
{
  dCopyVector3(res + 0, a + 0);
  dCopyVector3(res + 4, a + 4);
  dCopyVector3(res + 8, a + 8);
}

ODE_PURE_INLINE void dGetMatrixColumn3(dReal *res, const dReal *a, unsigned n)
{
  const dReal res_0 = a[n + 0];
  const dReal res_1 = a[n + 4];
  const dReal res_2 = a[n + 8];
  /* Only assign after all the calculations are over to avoid incurring memory aliasing*/
  res[0] = res_0; res[1] = res_1; res[2] = res_2;
}

ODE_PURE_INLINE dReal dCalcVectorLength3(const dReal *a)
{
  return dSqrt(a[0] * a[0] + a[1] * a[1] + a[2] * a[2]);
}

ODE_PURE_INLINE dReal dCalcVectorLengthSquare3(const dReal *a)
{
  return (a[0] * a[0] + a[1] * a[1] + a[2] * a[2]);
}

ODE_PURE_INLINE dReal dCalcPointDepth3(const dReal *test_p, const dReal *plane_p, const dReal *plane_n)
{
  return (plane_p[0] - test_p[0]) * plane_n[0] + (plane_p[1] - test_p[1]) * plane_n[1] + (plane_p[2] - test_p[2]) * plane_n[2];
}


/*
* 3-way dot product. _dCalcVectorDot3 means that elements of `a' and `b' are spaced
* step_a and step_b indexes apart respectively. dCalcVectorDot3() means dDot311.
*/

ODE_PURE_INLINE dReal _dCalcVectorDot3(const dReal *a, const dReal *b, unsigned step_a, unsigned step_b)
{
  return a[0] * b[0] + a[step_a] * b[step_b] + a[2 * step_a] * b[2 * step_b];
}


ODE_PURE_INLINE dReal dCalcVectorDot3    (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,1,1); }
ODE_PURE_INLINE dReal dCalcVectorDot3_13 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,1,3); }
ODE_PURE_INLINE dReal dCalcVectorDot3_31 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,3,1); }
ODE_PURE_INLINE dReal dCalcVectorDot3_33 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,3,3); }
ODE_PURE_INLINE dReal dCalcVectorDot3_14 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,1,4); }
ODE_PURE_INLINE dReal dCalcVectorDot3_41 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,4,1); }
ODE_PURE_INLINE dReal dCalcVectorDot3_44 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,4,4); }


/*
 * cross product, set res = a x b. _dCalcVectorCross3 means that elements of `res', `a'
 * and `b' are spaced step_res, step_a and step_b indexes apart respectively.
 * dCalcVectorCross3() means dCross3111. 
 */

ODE_PURE_INLINE void _dCalcVectorCross3(dReal *res, const dReal *a, const dReal *b, unsigned step_res, unsigned step_a, unsigned step_b)
{
  const dReal res_0 = a[  step_a]*b[2*step_b] - a[2*step_a]*b[  step_b];
  const dReal res_1 = a[2*step_a]*b[       0] - a[       0]*b[2*step_b];
  const dReal res_2 = a[       0]*b[  step_b] - a[  step_a]*b[       0];
  /* Only assign after all the calculations are over to avoid incurring memory aliasing*/
  res[         0] = res_0;
  res[  step_res] = res_1;
  res[2*step_res] = res_2;
}

ODE_PURE_INLINE void dCalcVectorCross3    (dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 1, 1, 1); }
ODE_PURE_INLINE void dCalcVectorCross3_114(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 1, 1, 4); }
ODE_PURE_INLINE void dCalcVectorCross3_141(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 1, 4, 1); }
ODE_PURE_INLINE void dCalcVectorCross3_144(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 1, 4, 4); }
ODE_PURE_INLINE void dCalcVectorCross3_411(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 4, 1, 1); }
ODE_PURE_INLINE void dCalcVectorCross3_414(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 4, 1, 4); }
ODE_PURE_INLINE void dCalcVectorCross3_441(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 4, 4, 1); }
ODE_PURE_INLINE void dCalcVectorCross3_444(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 4, 4, 4); }

ODE_PURE_INLINE void dAddVectorCross3(dReal *res, const dReal *a, const dReal *b)
{
  dReal tmp[3];
  dCalcVectorCross3(tmp, a, b);
  dAddVectors3(res, res, tmp);
}

ODE_PURE_INLINE void dSubtractVectorCross3(dReal *res, const dReal *a, const dReal *b)
{
  dReal tmp[3];
  dCalcVectorCross3(tmp, a, b);
  dSubtractVectors3(res, res, tmp);
}


/*
 * set a 3x3 submatrix of A to a matrix such that submatrix(A)*b = a x b.
 * A is stored by rows, and has `skip' elements per row. the matrix is
 * assumed to be already zero, so this does not write zero elements!
 * if (plus,minus) is (+,-) then a positive version will be written.
 * if (plus,minus) is (-,+) then a negative version will be written.
 */

ODE_PURE_INLINE void dSetCrossMatrixPlus(dReal *res, const dReal *a, unsigned skip)
{
  const dReal a_0 = a[0], a_1 = a[1], a_2 = a[2];
  res[1] = -a_2;
  res[2] = +a_1;
  res[skip+0] = +a_2;
  res[skip+2] = -a_0;
  res[2*skip+0] = -a_1;
  res[2*skip+1] = +a_0;
}

ODE_PURE_INLINE void dSetCrossMatrixMinus(dReal *res, const dReal *a, unsigned skip)
{
  const dReal a_0 = a[0], a_1 = a[1], a_2 = a[2];
  res[1] = +a_2;
  res[2] = -a_1;
  res[skip+0] = -a_2;
  res[skip+2] = +a_0;
  res[2*skip+0] = +a_1;
  res[2*skip+1] = -a_0;
}


/*
 * compute the distance between two 3D-vectors
 */

ODE_PURE_INLINE dReal dCalcPointsDistance3(const dReal *a, const dReal *b)
{
  dReal res;
  dReal tmp[3];
  dSubtractVectors3(tmp, a, b);
  res = dCalcVectorLength3(tmp);
  return res;
}

/*
 * special case matrix multiplication, with operator selection
 */

ODE_PURE_INLINE void dMultiplyHelper0_331(dReal *res, const dReal *a, const dReal *b)
{
  const dReal res_0 = dCalcVectorDot3(a, b);
  const dReal res_1 = dCalcVectorDot3(a + 4, b);
  const dReal res_2 = dCalcVectorDot3(a + 8, b);
  /* Only assign after all the calculations are over to avoid incurring memory aliasing*/
  res[0] = res_0; res[1] = res_1; res[2] = res_2;
}

ODE_PURE_INLINE void dMultiplyHelper1_331(dReal *res, const dReal *a, const dReal *b)
{
  const dReal res_0 = dCalcVectorDot3_41(a, b);
  const dReal res_1 = dCalcVectorDot3_41(a + 1, b);
  const dReal res_2 = dCalcVectorDot3_41(a + 2, b);
  /* Only assign after all the calculations are over to avoid incurring memory aliasing*/
  res[0] = res_0; res[1] = res_1; res[2] = res_2;
}

ODE_PURE_INLINE void dMultiplyHelper0_133(dReal *res, const dReal *a, const dReal *b)
{
  dMultiplyHelper1_331(res, b, a);
}

ODE_PURE_INLINE void dMultiplyHelper1_133(dReal *res, const dReal *a, const dReal *b)
{
  const dReal res_0 = dCalcVectorDot3_44(a, b);
  const dReal res_1 = dCalcVectorDot3_44(a + 1, b);
  const dReal res_2 = dCalcVectorDot3_44(a + 2, b);
  /* Only assign after all the calculations are over to avoid incurring memory aliasing*/
  res[0] = res_0; res[1] = res_1; res[2] = res_2;
}

/* 
Note: NEVER call any of these functions/macros with the same variable for A and C, 
it is not equivalent to A*=B.
*/

ODE_PURE_INLINE void dMultiply0_331(dReal *res, const dReal *a, const dReal *b)
{
  dMultiplyHelper0_331(res, a, b);
}

ODE_PURE_INLINE void dMultiply1_331(dReal *res, const dReal *a, const dReal *b)
{
  dMultiplyHelper1_331(res, a, b);
}

ODE_PURE_INLINE void dMultiply0_133(dReal *res, const dReal *a, const dReal *b)
{
  dMultiplyHelper0_133(res, a, b);
}

ODE_PURE_INLINE void dMultiply0_333(dReal *res, const dReal *a, const dReal *b)
{
  dMultiplyHelper0_133(res + 0, a + 0, b);
  dMultiplyHelper0_133(res + 4, a + 4, b);
  dMultiplyHelper0_133(res + 8, a + 8, b);
}

ODE_PURE_INLINE void dMultiply1_333(dReal *res, const dReal *a, const dReal *b)
{
  dMultiplyHelper1_133(res + 0, b, a + 0);
  dMultiplyHelper1_133(res + 4, b, a + 1);
  dMultiplyHelper1_133(res + 8, b, a + 2);
}

ODE_PURE_INLINE void dMultiply2_333(dReal *res, const dReal *a, const dReal *b)
{
  dMultiplyHelper0_331(res + 0, b, a + 0);
  dMultiplyHelper0_331(res + 4, b, a + 4);
  dMultiplyHelper0_331(res + 8, b, a + 8);
}

ODE_PURE_INLINE void dMultiplyAdd0_331(dReal *res, const dReal *a, const dReal *b)
{
  dReal tmp[3];
  dMultiplyHelper0_331(tmp, a, b);
  dAddVectors3(res, res, tmp);
}

ODE_PURE_INLINE void dMultiplyAdd1_331(dReal *res, const dReal *a, const dReal *b)
{
  dReal tmp[3];
  dMultiplyHelper1_331(tmp, a, b);
  dAddVectors3(res, res, tmp);
}

ODE_PURE_INLINE void dMultiplyAdd0_133(dReal *res, const dReal *a, const dReal *b)
{
  dReal tmp[3];
  dMultiplyHelper0_133(tmp, a, b);
  dAddVectors3(res, res, tmp);
}

ODE_PURE_INLINE void dMultiplyAdd0_333(dReal *res, const dReal *a, const dReal *b)
{
  dReal tmp[3];
  dMultiplyHelper0_133(tmp, a + 0, b);
  dAddVectors3(res+ 0, res + 0, tmp);
  dMultiplyHelper0_133(tmp, a + 4, b);
  dAddVectors3(res + 4, res + 4, tmp);
  dMultiplyHelper0_133(tmp, a + 8, b);
  dAddVectors3(res + 8, res + 8, tmp);
}

ODE_PURE_INLINE void dMultiplyAdd1_333(dReal *res, const dReal *a, const dReal *b)
{
  dReal tmp[3];
  dMultiplyHelper1_133(tmp, b, a + 0);
  dAddVectors3(res + 0, res + 0, tmp);
  dMultiplyHelper1_133(tmp, b, a + 1);
  dAddVectors3(res + 4, res + 4, tmp);
  dMultiplyHelper1_133(tmp, b, a + 2);
  dAddVectors3(res + 8, res + 8, tmp);
}

ODE_PURE_INLINE void dMultiplyAdd2_333(dReal *res, const dReal *a, const dReal *b)
{
  dReal tmp[3];
  dMultiplyHelper0_331(tmp, b, a + 0);
  dAddVectors3(res + 0, res + 0, tmp);
  dMultiplyHelper0_331(tmp, b, a + 4);
  dAddVectors3(res + 4, res + 4, tmp);
  dMultiplyHelper0_331(tmp, b, a + 8);
  dAddVectors3(res + 8, res + 8, tmp);
}

ODE_PURE_INLINE dReal dCalcMatrix3Det( const dReal* mat )
{
    dReal det;

    det = mat[0] * ( mat[5]*mat[10] - mat[9]*mat[6] )
        - mat[1] * ( mat[4]*mat[10] - mat[8]*mat[6] )
        + mat[2] * ( mat[4]*mat[9]  - mat[8]*mat[5] );

    return( det );
}

/**
  Closed form matrix inversion, copied from 
  collision_util.h for use in the stepper.

  Returns the determinant.  
  returns 0 and does nothing
  if the matrix is singular.
*/
ODE_PURE_INLINE dReal dInvertMatrix3(dReal *dst, const dReal *ma)
{
    dReal det;  
    dReal detRecip;

    det = dCalcMatrix3Det( ma );
    

    /* Setting an arbitrary non-zero threshold 
       for the determinant doesn't do anyone 
       any favors.  The condition number is the
       important thing.  If all the eigen-values 
       of the matrix are small, so is the 
       determinant, but it can still be well
       conditioned.  
       A single extremely large eigen-value could
       push the determinant over threshold, but 
       produce a very unstable result if the other
       eigen-values are small.  So we just say that
       the determinant must be non-zero and trust the
       caller to provide well-conditioned matrices.
       */
    if ( det == 0 )
    {
        return 0;
    }

    detRecip = dRecip(det);    

    dst[0] =  ( ma[5]*ma[10] - ma[6]*ma[9]  ) * detRecip;
    dst[1] =  ( ma[9]*ma[2]  - ma[1]*ma[10] ) * detRecip;
    dst[2] =  ( ma[1]*ma[6]  - ma[5]*ma[2]  ) * detRecip;

    dst[4] =  ( ma[6]*ma[8]  - ma[4]*ma[10] ) * detRecip;
    dst[5] =  ( ma[0]*ma[10] - ma[8]*ma[2]  ) * detRecip;
    dst[6] =  ( ma[4]*ma[2]  - ma[0]*ma[6]  ) * detRecip;

    dst[8] =  ( ma[4]*ma[9]  - ma[8]*ma[5]  ) * detRecip;
    dst[9] =  ( ma[8]*ma[1]  - ma[0]*ma[9]  ) * detRecip;
    dst[10] = ( ma[0]*ma[5]  - ma[1]*ma[4]  ) * detRecip;

    return det;
}


/* Include legacy macros here */
#include <ode/odemath_legacy.h>


#ifdef __cplusplus
extern "C" {
#endif

/*
 * normalize 3x1 and 4x1 vectors (i.e. scale them to unit length)
 */

/* For DLL export*/
ODE_API int  dSafeNormalize3 (dVector3 a);
ODE_API int  dSafeNormalize4 (dVector4 a);
ODE_API void dNormalize3 (dVector3 a); /* Potentially asserts on zero vec*/
ODE_API void dNormalize4 (dVector4 a); /* Potentially asserts on zero vec*/

/*
 * given a unit length "normal" vector n, generate vectors p and q vectors
 * that are an orthonormal basis for the plane space perpendicular to n.
 * i.e. this makes p,q such that n,p,q are all perpendicular to each other.
 * q will equal n x p. if n is not unit length then p will be unit length but
 * q wont be.
 */

ODE_API void dPlaneSpace (const dVector3 n, dVector3 p, dVector3 q);
/* Makes sure the matrix is a proper rotation */
ODE_API void dOrthogonalizeR(dMatrix3 m);



#ifdef __cplusplus
}
#endif


#endif