/usr/include/ode/odemath.h is in libode-dev 2:0.14-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 | /*************************************************************************
* *
* Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. *
* All rights reserved. Email: russ@q12.org Web: www.q12.org *
* *
* This library is free software; you can redistribute it and/or *
* modify it under the terms of EITHER: *
* (1) The GNU Lesser General Public License as published by the Free *
* Software Foundation; either version 2.1 of the License, or (at *
* your option) any later version. The text of the GNU Lesser *
* General Public License is included with this library in the *
* file LICENSE.TXT. *
* (2) The BSD-style license that is included with this library in *
* the file LICENSE-BSD.TXT. *
* *
* This library is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
* LICENSE.TXT and LICENSE-BSD.TXT for more details. *
* *
*************************************************************************/
#ifndef _ODE_ODEMATH_H_
#define _ODE_ODEMATH_H_
#include <ode/common.h>
/*
* macro to access elements i,j in an NxM matrix A, independent of the
* matrix storage convention.
*/
#define dACCESS33(A,i,j) ((A)[(i)*4+(j)])
/*
* Macro to test for valid floating point values
*/
#define dVALIDVEC3(v) (!(dIsNan(v[0]) || dIsNan(v[1]) || dIsNan(v[2])))
#define dVALIDVEC4(v) (!(dIsNan(v[0]) || dIsNan(v[1]) || dIsNan(v[2]) || dIsNan(v[3])))
#define dVALIDMAT3(m) (!(dIsNan(m[0]) || dIsNan(m[1]) || dIsNan(m[2]) || dIsNan(m[3]) || dIsNan(m[4]) || dIsNan(m[5]) || dIsNan(m[6]) || dIsNan(m[7]) || dIsNan(m[8]) || dIsNan(m[9]) || dIsNan(m[10]) || dIsNan(m[11])))
#define dVALIDMAT4(m) (!(dIsNan(m[0]) || dIsNan(m[1]) || dIsNan(m[2]) || dIsNan(m[3]) || dIsNan(m[4]) || dIsNan(m[5]) || dIsNan(m[6]) || dIsNan(m[7]) || dIsNan(m[8]) || dIsNan(m[9]) || dIsNan(m[10]) || dIsNan(m[11]) || dIsNan(m[12]) || dIsNan(m[13]) || dIsNan(m[14]) || dIsNan(m[15]) ))
/* Some vector math */
ODE_PURE_INLINE void dAddVectors3(dReal *res, const dReal *a, const dReal *b)
{
const dReal res_0 = a[0] + b[0];
const dReal res_1 = a[1] + b[1];
const dReal res_2 = a[2] + b[2];
/* Only assign after all the calculations are over to avoid incurring memory aliasing*/
res[0] = res_0; res[1] = res_1; res[2] = res_2;
}
ODE_PURE_INLINE void dSubtractVectors3(dReal *res, const dReal *a, const dReal *b)
{
const dReal res_0 = a[0] - b[0];
const dReal res_1 = a[1] - b[1];
const dReal res_2 = a[2] - b[2];
/* Only assign after all the calculations are over to avoid incurring memory aliasing*/
res[0] = res_0; res[1] = res_1; res[2] = res_2;
}
ODE_PURE_INLINE void dAddScaledVectors3(dReal *res, const dReal *a, const dReal *b, dReal a_scale, dReal b_scale)
{
const dReal res_0 = a_scale * a[0] + b_scale * b[0];
const dReal res_1 = a_scale * a[1] + b_scale * b[1];
const dReal res_2 = a_scale * a[2] + b_scale * b[2];
/* Only assign after all the calculations are over to avoid incurring memory aliasing*/
res[0] = res_0; res[1] = res_1; res[2] = res_2;
}
ODE_PURE_INLINE void dScaleVector3(dReal *res, dReal nScale)
{
res[0] *= nScale ;
res[1] *= nScale ;
res[2] *= nScale ;
}
ODE_PURE_INLINE void dNegateVector3(dReal *res)
{
res[0] = -res[0];
res[1] = -res[1];
res[2] = -res[2];
}
ODE_PURE_INLINE void dCopyVector3(dReal *res, const dReal *a)
{
const dReal res_0 = a[0];
const dReal res_1 = a[1];
const dReal res_2 = a[2];
/* Only assign after all the calculations are over to avoid incurring memory aliasing*/
res[0] = res_0; res[1] = res_1; res[2] = res_2;
}
ODE_PURE_INLINE void dCopyScaledVector3(dReal *res, const dReal *a, dReal nScale)
{
const dReal res_0 = a[0] * nScale;
const dReal res_1 = a[1] * nScale;
const dReal res_2 = a[2] * nScale;
/* Only assign after all the calculations are over to avoid incurring memory aliasing*/
res[0] = res_0; res[1] = res_1; res[2] = res_2;
}
ODE_PURE_INLINE void dCopyNegatedVector3(dReal *res, const dReal *a)
{
const dReal res_0 = -a[0];
const dReal res_1 = -a[1];
const dReal res_2 = -a[2];
/* Only assign after all the calculations are over to avoid incurring memory aliasing*/
res[0] = res_0; res[1] = res_1; res[2] = res_2;
}
ODE_PURE_INLINE void dCopyVector4(dReal *res, const dReal *a)
{
const dReal res_0 = a[0];
const dReal res_1 = a[1];
const dReal res_2 = a[2];
const dReal res_3 = a[3];
/* Only assign after all the calculations are over to avoid incurring memory aliasing*/
res[0] = res_0; res[1] = res_1; res[2] = res_2; res[3] = res_3;
}
ODE_PURE_INLINE void dCopyMatrix4x4(dReal *res, const dReal *a)
{
dCopyVector4(res + 0, a + 0);
dCopyVector4(res + 4, a + 4);
dCopyVector4(res + 8, a + 8);
}
ODE_PURE_INLINE void dCopyMatrix4x3(dReal *res, const dReal *a)
{
dCopyVector3(res + 0, a + 0);
dCopyVector3(res + 4, a + 4);
dCopyVector3(res + 8, a + 8);
}
ODE_PURE_INLINE void dGetMatrixColumn3(dReal *res, const dReal *a, unsigned n)
{
const dReal res_0 = a[n + 0];
const dReal res_1 = a[n + 4];
const dReal res_2 = a[n + 8];
/* Only assign after all the calculations are over to avoid incurring memory aliasing*/
res[0] = res_0; res[1] = res_1; res[2] = res_2;
}
ODE_PURE_INLINE dReal dCalcVectorLength3(const dReal *a)
{
return dSqrt(a[0] * a[0] + a[1] * a[1] + a[2] * a[2]);
}
ODE_PURE_INLINE dReal dCalcVectorLengthSquare3(const dReal *a)
{
return (a[0] * a[0] + a[1] * a[1] + a[2] * a[2]);
}
ODE_PURE_INLINE dReal dCalcPointDepth3(const dReal *test_p, const dReal *plane_p, const dReal *plane_n)
{
return (plane_p[0] - test_p[0]) * plane_n[0] + (plane_p[1] - test_p[1]) * plane_n[1] + (plane_p[2] - test_p[2]) * plane_n[2];
}
/*
* 3-way dot product. _dCalcVectorDot3 means that elements of `a' and `b' are spaced
* step_a and step_b indexes apart respectively. dCalcVectorDot3() means dDot311.
*/
ODE_PURE_INLINE dReal _dCalcVectorDot3(const dReal *a, const dReal *b, unsigned step_a, unsigned step_b)
{
return a[0] * b[0] + a[step_a] * b[step_b] + a[2 * step_a] * b[2 * step_b];
}
ODE_PURE_INLINE dReal dCalcVectorDot3 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,1,1); }
ODE_PURE_INLINE dReal dCalcVectorDot3_13 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,1,3); }
ODE_PURE_INLINE dReal dCalcVectorDot3_31 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,3,1); }
ODE_PURE_INLINE dReal dCalcVectorDot3_33 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,3,3); }
ODE_PURE_INLINE dReal dCalcVectorDot3_14 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,1,4); }
ODE_PURE_INLINE dReal dCalcVectorDot3_41 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,4,1); }
ODE_PURE_INLINE dReal dCalcVectorDot3_44 (const dReal *a, const dReal *b) { return _dCalcVectorDot3(a,b,4,4); }
/*
* cross product, set res = a x b. _dCalcVectorCross3 means that elements of `res', `a'
* and `b' are spaced step_res, step_a and step_b indexes apart respectively.
* dCalcVectorCross3() means dCross3111.
*/
ODE_PURE_INLINE void _dCalcVectorCross3(dReal *res, const dReal *a, const dReal *b, unsigned step_res, unsigned step_a, unsigned step_b)
{
const dReal res_0 = a[ step_a]*b[2*step_b] - a[2*step_a]*b[ step_b];
const dReal res_1 = a[2*step_a]*b[ 0] - a[ 0]*b[2*step_b];
const dReal res_2 = a[ 0]*b[ step_b] - a[ step_a]*b[ 0];
/* Only assign after all the calculations are over to avoid incurring memory aliasing*/
res[ 0] = res_0;
res[ step_res] = res_1;
res[2*step_res] = res_2;
}
ODE_PURE_INLINE void dCalcVectorCross3 (dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 1, 1, 1); }
ODE_PURE_INLINE void dCalcVectorCross3_114(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 1, 1, 4); }
ODE_PURE_INLINE void dCalcVectorCross3_141(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 1, 4, 1); }
ODE_PURE_INLINE void dCalcVectorCross3_144(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 1, 4, 4); }
ODE_PURE_INLINE void dCalcVectorCross3_411(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 4, 1, 1); }
ODE_PURE_INLINE void dCalcVectorCross3_414(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 4, 1, 4); }
ODE_PURE_INLINE void dCalcVectorCross3_441(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 4, 4, 1); }
ODE_PURE_INLINE void dCalcVectorCross3_444(dReal *res, const dReal *a, const dReal *b) { _dCalcVectorCross3(res, a, b, 4, 4, 4); }
ODE_PURE_INLINE void dAddVectorCross3(dReal *res, const dReal *a, const dReal *b)
{
dReal tmp[3];
dCalcVectorCross3(tmp, a, b);
dAddVectors3(res, res, tmp);
}
ODE_PURE_INLINE void dSubtractVectorCross3(dReal *res, const dReal *a, const dReal *b)
{
dReal tmp[3];
dCalcVectorCross3(tmp, a, b);
dSubtractVectors3(res, res, tmp);
}
/*
* set a 3x3 submatrix of A to a matrix such that submatrix(A)*b = a x b.
* A is stored by rows, and has `skip' elements per row. the matrix is
* assumed to be already zero, so this does not write zero elements!
* if (plus,minus) is (+,-) then a positive version will be written.
* if (plus,minus) is (-,+) then a negative version will be written.
*/
ODE_PURE_INLINE void dSetCrossMatrixPlus(dReal *res, const dReal *a, unsigned skip)
{
const dReal a_0 = a[0], a_1 = a[1], a_2 = a[2];
res[1] = -a_2;
res[2] = +a_1;
res[skip+0] = +a_2;
res[skip+2] = -a_0;
res[2*skip+0] = -a_1;
res[2*skip+1] = +a_0;
}
ODE_PURE_INLINE void dSetCrossMatrixMinus(dReal *res, const dReal *a, unsigned skip)
{
const dReal a_0 = a[0], a_1 = a[1], a_2 = a[2];
res[1] = +a_2;
res[2] = -a_1;
res[skip+0] = -a_2;
res[skip+2] = +a_0;
res[2*skip+0] = +a_1;
res[2*skip+1] = -a_0;
}
/*
* compute the distance between two 3D-vectors
*/
ODE_PURE_INLINE dReal dCalcPointsDistance3(const dReal *a, const dReal *b)
{
dReal res;
dReal tmp[3];
dSubtractVectors3(tmp, a, b);
res = dCalcVectorLength3(tmp);
return res;
}
/*
* special case matrix multiplication, with operator selection
*/
ODE_PURE_INLINE void dMultiplyHelper0_331(dReal *res, const dReal *a, const dReal *b)
{
const dReal res_0 = dCalcVectorDot3(a, b);
const dReal res_1 = dCalcVectorDot3(a + 4, b);
const dReal res_2 = dCalcVectorDot3(a + 8, b);
/* Only assign after all the calculations are over to avoid incurring memory aliasing*/
res[0] = res_0; res[1] = res_1; res[2] = res_2;
}
ODE_PURE_INLINE void dMultiplyHelper1_331(dReal *res, const dReal *a, const dReal *b)
{
const dReal res_0 = dCalcVectorDot3_41(a, b);
const dReal res_1 = dCalcVectorDot3_41(a + 1, b);
const dReal res_2 = dCalcVectorDot3_41(a + 2, b);
/* Only assign after all the calculations are over to avoid incurring memory aliasing*/
res[0] = res_0; res[1] = res_1; res[2] = res_2;
}
ODE_PURE_INLINE void dMultiplyHelper0_133(dReal *res, const dReal *a, const dReal *b)
{
dMultiplyHelper1_331(res, b, a);
}
ODE_PURE_INLINE void dMultiplyHelper1_133(dReal *res, const dReal *a, const dReal *b)
{
const dReal res_0 = dCalcVectorDot3_44(a, b);
const dReal res_1 = dCalcVectorDot3_44(a + 1, b);
const dReal res_2 = dCalcVectorDot3_44(a + 2, b);
/* Only assign after all the calculations are over to avoid incurring memory aliasing*/
res[0] = res_0; res[1] = res_1; res[2] = res_2;
}
/*
Note: NEVER call any of these functions/macros with the same variable for A and C,
it is not equivalent to A*=B.
*/
ODE_PURE_INLINE void dMultiply0_331(dReal *res, const dReal *a, const dReal *b)
{
dMultiplyHelper0_331(res, a, b);
}
ODE_PURE_INLINE void dMultiply1_331(dReal *res, const dReal *a, const dReal *b)
{
dMultiplyHelper1_331(res, a, b);
}
ODE_PURE_INLINE void dMultiply0_133(dReal *res, const dReal *a, const dReal *b)
{
dMultiplyHelper0_133(res, a, b);
}
ODE_PURE_INLINE void dMultiply0_333(dReal *res, const dReal *a, const dReal *b)
{
dMultiplyHelper0_133(res + 0, a + 0, b);
dMultiplyHelper0_133(res + 4, a + 4, b);
dMultiplyHelper0_133(res + 8, a + 8, b);
}
ODE_PURE_INLINE void dMultiply1_333(dReal *res, const dReal *a, const dReal *b)
{
dMultiplyHelper1_133(res + 0, b, a + 0);
dMultiplyHelper1_133(res + 4, b, a + 1);
dMultiplyHelper1_133(res + 8, b, a + 2);
}
ODE_PURE_INLINE void dMultiply2_333(dReal *res, const dReal *a, const dReal *b)
{
dMultiplyHelper0_331(res + 0, b, a + 0);
dMultiplyHelper0_331(res + 4, b, a + 4);
dMultiplyHelper0_331(res + 8, b, a + 8);
}
ODE_PURE_INLINE void dMultiplyAdd0_331(dReal *res, const dReal *a, const dReal *b)
{
dReal tmp[3];
dMultiplyHelper0_331(tmp, a, b);
dAddVectors3(res, res, tmp);
}
ODE_PURE_INLINE void dMultiplyAdd1_331(dReal *res, const dReal *a, const dReal *b)
{
dReal tmp[3];
dMultiplyHelper1_331(tmp, a, b);
dAddVectors3(res, res, tmp);
}
ODE_PURE_INLINE void dMultiplyAdd0_133(dReal *res, const dReal *a, const dReal *b)
{
dReal tmp[3];
dMultiplyHelper0_133(tmp, a, b);
dAddVectors3(res, res, tmp);
}
ODE_PURE_INLINE void dMultiplyAdd0_333(dReal *res, const dReal *a, const dReal *b)
{
dReal tmp[3];
dMultiplyHelper0_133(tmp, a + 0, b);
dAddVectors3(res+ 0, res + 0, tmp);
dMultiplyHelper0_133(tmp, a + 4, b);
dAddVectors3(res + 4, res + 4, tmp);
dMultiplyHelper0_133(tmp, a + 8, b);
dAddVectors3(res + 8, res + 8, tmp);
}
ODE_PURE_INLINE void dMultiplyAdd1_333(dReal *res, const dReal *a, const dReal *b)
{
dReal tmp[3];
dMultiplyHelper1_133(tmp, b, a + 0);
dAddVectors3(res + 0, res + 0, tmp);
dMultiplyHelper1_133(tmp, b, a + 1);
dAddVectors3(res + 4, res + 4, tmp);
dMultiplyHelper1_133(tmp, b, a + 2);
dAddVectors3(res + 8, res + 8, tmp);
}
ODE_PURE_INLINE void dMultiplyAdd2_333(dReal *res, const dReal *a, const dReal *b)
{
dReal tmp[3];
dMultiplyHelper0_331(tmp, b, a + 0);
dAddVectors3(res + 0, res + 0, tmp);
dMultiplyHelper0_331(tmp, b, a + 4);
dAddVectors3(res + 4, res + 4, tmp);
dMultiplyHelper0_331(tmp, b, a + 8);
dAddVectors3(res + 8, res + 8, tmp);
}
ODE_PURE_INLINE dReal dCalcMatrix3Det( const dReal* mat )
{
dReal det;
det = mat[0] * ( mat[5]*mat[10] - mat[9]*mat[6] )
- mat[1] * ( mat[4]*mat[10] - mat[8]*mat[6] )
+ mat[2] * ( mat[4]*mat[9] - mat[8]*mat[5] );
return( det );
}
/**
Closed form matrix inversion, copied from
collision_util.h for use in the stepper.
Returns the determinant.
returns 0 and does nothing
if the matrix is singular.
*/
ODE_PURE_INLINE dReal dInvertMatrix3(dReal *dst, const dReal *ma)
{
dReal det;
dReal detRecip;
det = dCalcMatrix3Det( ma );
/* Setting an arbitrary non-zero threshold
for the determinant doesn't do anyone
any favors. The condition number is the
important thing. If all the eigen-values
of the matrix are small, so is the
determinant, but it can still be well
conditioned.
A single extremely large eigen-value could
push the determinant over threshold, but
produce a very unstable result if the other
eigen-values are small. So we just say that
the determinant must be non-zero and trust the
caller to provide well-conditioned matrices.
*/
if ( det == 0 )
{
return 0;
}
detRecip = dRecip(det);
dst[0] = ( ma[5]*ma[10] - ma[6]*ma[9] ) * detRecip;
dst[1] = ( ma[9]*ma[2] - ma[1]*ma[10] ) * detRecip;
dst[2] = ( ma[1]*ma[6] - ma[5]*ma[2] ) * detRecip;
dst[4] = ( ma[6]*ma[8] - ma[4]*ma[10] ) * detRecip;
dst[5] = ( ma[0]*ma[10] - ma[8]*ma[2] ) * detRecip;
dst[6] = ( ma[4]*ma[2] - ma[0]*ma[6] ) * detRecip;
dst[8] = ( ma[4]*ma[9] - ma[8]*ma[5] ) * detRecip;
dst[9] = ( ma[8]*ma[1] - ma[0]*ma[9] ) * detRecip;
dst[10] = ( ma[0]*ma[5] - ma[1]*ma[4] ) * detRecip;
return det;
}
/* Include legacy macros here */
#include <ode/odemath_legacy.h>
#ifdef __cplusplus
extern "C" {
#endif
/*
* normalize 3x1 and 4x1 vectors (i.e. scale them to unit length)
*/
/* For DLL export*/
ODE_API int dSafeNormalize3 (dVector3 a);
ODE_API int dSafeNormalize4 (dVector4 a);
ODE_API void dNormalize3 (dVector3 a); /* Potentially asserts on zero vec*/
ODE_API void dNormalize4 (dVector4 a); /* Potentially asserts on zero vec*/
/*
* given a unit length "normal" vector n, generate vectors p and q vectors
* that are an orthonormal basis for the plane space perpendicular to n.
* i.e. this makes p,q such that n,p,q are all perpendicular to each other.
* q will equal n x p. if n is not unit length then p will be unit length but
* q wont be.
*/
ODE_API void dPlaneSpace (const dVector3 n, dVector3 p, dVector3 q);
/* Makes sure the matrix is a proper rotation */
ODE_API void dOrthogonalizeR(dMatrix3 m);
#ifdef __cplusplus
}
#endif
#endif
|