This file is indexed.

/usr/include/NTL/lip.h is in libntl-dev 10.5.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
#ifndef NTL_g_lip__H
#define NTL_g_lip__H

#include <NTL/ctools.h>

#ifdef NTL_GMP_LIP
#include <NTL/gmp_aux.h>
#endif


/*
 * This way of defining the bigint handle type is a bit non-standard,
 * but better for debugging.
 */

struct _ntl_gbigint_body;
typedef _ntl_gbigint_body *_ntl_gbigint;




#ifdef NTL_GMP_LIP


#if (defined(NTL_HAVE_LL_TYPE) && !defined(NTL_LEGACY_SP_MULMOD))

#define NTL_LONGLONG_SP_MULMOD

// on 64 bit machines, hold NTL_SP_NBITS to 60 bits,
// as certain operations (in particular, TBL_REM in g_lip_impl.h)
// are a bit faster


#if (!defined(NTL_MAXIMIZE_SP_NBITS) && NTL_BITS_PER_LONG >= 64)
#define NTL_SP_NBITS (NTL_BITS_PER_LONG-4)
#else
#define NTL_SP_NBITS (NTL_BITS_PER_LONG-2)
#endif




#elif (NTL_LONGDOUBLE_OK && !defined(NTL_LEGACY_SP_MULMOD) && !defined(NTL_DISABLE_LONGDOUBLE))

#define NTL_LONGDOUBLE_SP_MULMOD

#define NTL_SP_NBITS NTL_WNBITS_MAX

// on 64 bit machines, hold NTL_SP_NBITS to 60 bits (see above)

#if (!defined(NTL_MAXIMIZE_SP_NBITS) && NTL_BITS_PER_LONG >= 64 && NTL_SP_NBITS > NTL_BITS_PER_LONG-4)
#undef NTL_SP_NBITS
#define NTL_SP_NBITS (NTL_BITS_PER_LONG-4)
#endif


#else


#define NTL_SP_NBITS NTL_NBITS_MAX


#endif

#if (NTL_SP_NBITS > NTL_ZZ_NBITS)
// if nails, we need to ensure NTL_SP_NBITS does not exceed
// NTL_ZZ_NBITS

#undef NTL_SP_NBITS
#define NTL_SP_NBITS NTL_ZZ_NBITS
#endif

#define NTL_NSP_NBITS NTL_NBITS_MAX
#if (NTL_NSP_NBITS > NTL_SP_NBITS)
#undef NTL_NSP_NBITS
#define NTL_NSP_NBITS NTL_SP_NBITS
#endif

#define NTL_WSP_NBITS (NTL_BITS_PER_LONG-2)
#if (NTL_WSP_NBITS > NTL_ZZ_NBITS)
// if nails, we need to ensure NTL_WSP_NBITS does not exceed
// NTL_ZZ_NBITS

#undef NTL_WSP_NBITS
#define NTL_WSP_NBITS NTL_ZZ_NBITS
#endif

#define NTL_SP_BOUND (1L << NTL_SP_NBITS)
#define NTL_NSP_BOUND (1L << NTL_NSP_NBITS)
#define NTL_WSP_BOUND (1L << NTL_WSP_NBITS)

/* define the following so an error is raised */

#define NTL_RADIX ......
#define NTL_NBITSH ......
#define NTL_RADIXM ......
#define NTL_RADIXROOT ......
#define NTL_RADIXROOTM ......
#define NTL_FRADIX_INV ......




#else

#define NTL_NBITS NTL_NBITS_MAX


#define NTL_RADIX           (1L<<NTL_NBITS)
#define NTL_NBITSH          (NTL_NBITS>>1)
#define NTL_RADIXM          (NTL_RADIX-1)
#define NTL_RADIXROOT       (1L<<NTL_NBITSH)
#define NTL_RADIXROOTM      (NTL_RADIXROOT-1)

#define NTL_FRADIX ((double) NTL_RADIX)
#define NTL_FRADIX_INV  (((double) 1.0)/((double) NTL_RADIX))


#define NTL_BITS_PER_LIMB_T NTL_BITS_PER_LONG
#define NTL_ZZ_NBITS NTL_NBITS
#define NTL_ZZ_FRADIX ((double) (1L << NTL_NBITS))
#define NTL_ZZ_WIDE_FRADIX ((double) (1L << NTL_NBITS))

#define NTL_SP_NBITS NTL_NBITS
#define NTL_SP_BOUND (1L << NTL_SP_NBITS)

#define NTL_NSP_NBITS NTL_NBITS
#define NTL_NSP_BOUND (1L << NTL_NSP_NBITS)

#define NTL_WSP_NBITS NTL_ZZ_NBITS
#define NTL_WSP_BOUND (1L << NTL_WSP_NBITS)



// Legacy function
long _ntl_gdigit(_ntl_gbigint a, long i);

#endif



// DIRT: These are copied from lip.cpp file

inline long& _ntl_ALLOC(_ntl_gbigint p)
   { return (((long *) p)[0]); }

inline long& _ntl_SIZE(_ntl_gbigint p)
   { return (((long *) p)[1]); }

inline long _ntl_ZEROP(_ntl_gbigint p)
{
   return !p || !_ntl_SIZE(p);
}

inline long _ntl_PINNED(_ntl_gbigint p)
  { return p && (_ntl_ALLOC(p) & 1); }


/***********************************************************************

   Basic Functions

***********************************************************************/
    


    void _ntl_gsadd(_ntl_gbigint a, long d, _ntl_gbigint *b);
       /* *b = a + d */

    void _ntl_gadd(_ntl_gbigint a, _ntl_gbigint b, _ntl_gbigint *c);
       /*  *c = a + b */

    void _ntl_gsub(_ntl_gbigint a, _ntl_gbigint b, _ntl_gbigint *c);
       /* *c = a - b */

    void _ntl_gsubpos(_ntl_gbigint a, _ntl_gbigint b, _ntl_gbigint *c);
       /* *c = a - b; assumes a >= b >= 0 */

    void _ntl_gsmul(_ntl_gbigint a, long d, _ntl_gbigint *b);
       /* *b = d * a */

    void _ntl_gmul(_ntl_gbigint a, _ntl_gbigint b, _ntl_gbigint *c);
       /* *c = a * b */

    void _ntl_gsq(_ntl_gbigint a, _ntl_gbigint *c);
       /* *c = a * a */

    long _ntl_gsdiv(_ntl_gbigint a, long b, _ntl_gbigint *q);
       /* (*q) = floor(a/b) and a - floor(a/b)*(*q) is returned;
          error is raised if b == 0;
          if b does not divide a, then sign(*q) == sign(b) */

    void _ntl_gdiv(_ntl_gbigint a, _ntl_gbigint b, _ntl_gbigint *q, _ntl_gbigint *r);
       /* (*q) = floor(a/b) and (*r) = a - floor(a/b)*(*q);
          error is raised if b == 0;
          if b does not divide a, then sign(*q) == sign(b) */

    void _ntl_gmod(_ntl_gbigint a, _ntl_gbigint b, _ntl_gbigint *r);
       /* same as _ntl_gdiv, but only remainder is computed */

    long _ntl_gsmod(_ntl_gbigint a, long d);
       /* same as _ntl_gsdiv, but only remainder is computed */

    void _ntl_gquickmod(_ntl_gbigint *r, _ntl_gbigint b);
       /* *r = *r % b; 
	  The division is performed in place (but may sometimes
	  assumes b > 0 and *r >= 0;
          cause *r to grow by one digit) */

    void _ntl_gsaddmul(_ntl_gbigint x, long y,  _ntl_gbigint *ww);
      /* *ww += x*y */

    void _ntl_gaddmul(_ntl_gbigint x, _ntl_gbigint y,  _ntl_gbigint *ww);
      /* *ww += x*y */

    void _ntl_gssubmul(_ntl_gbigint x, long y,  _ntl_gbigint *ww);
      /* *ww -= x*y */

    void _ntl_gsubmul(_ntl_gbigint x, _ntl_gbigint y,  _ntl_gbigint *ww);
      /* *ww -= x*y */





/********************************************************************

   Shifting and bit manipulation

*********************************************************************/


    void _ntl_glshift(_ntl_gbigint n, long k, _ntl_gbigint *a);
       /* *a = sign(n) * (|n| << k);
          shift is in reverse direction for negative k */

    void _ntl_grshift(_ntl_gbigint n, long k, _ntl_gbigint *a);
       /* *a = sign(n) * (|n| >> k);
          shift is in reverse direction for negative k */
    
    long _ntl_gmakeodd(_ntl_gbigint *n);
       /*
          if (n != 0)
              *n = m;
              return (k such that n == 2 ^ k * m with m odd);
          else
              return (0); 
        */

    long _ntl_gnumtwos(_ntl_gbigint n);
        /* return largest e such that 2^e divides n, or zero if n is zero */

    long _ntl_godd(_ntl_gbigint a);
       /* returns 1 if n is odd and 0 if it is even */

    long _ntl_gbit(_ntl_gbigint a, long p);
       /* returns p-th bit of a, where the low order bit is indexed by 0;
          p out of range returns 0 */

    long _ntl_gsetbit(_ntl_gbigint *a, long p);
       /* returns original value of p-th bit of |a|, and replaces
          p-th bit of a by 1 if it was zero;
          error if p < 0 */

    long _ntl_gswitchbit(_ntl_gbigint *a, long p);
       /* returns original value of p-th bit of |a|, and switches
          the value of p-th bit of a;
          p starts counting at 0;
          error if p < 0 */


     void _ntl_glowbits(_ntl_gbigint a, long k, _ntl_gbigint *b);
        /* places k low order bits of |a| in b */ 

     long _ntl_gslowbits(_ntl_gbigint a, long k);
        /* returns k low order bits of |a| */

    long _ntl_gweights(long a);
        /* returns Hamming weight of |a| */

    long _ntl_gweight(_ntl_gbigint a);
        /* returns Hamming weight of |a| */

    void _ntl_gand(_ntl_gbigint a, _ntl_gbigint b, _ntl_gbigint *c);
        /* c gets bit pattern `bits of |a|` and `bits of |b|` */

    void _ntl_gor(_ntl_gbigint a, _ntl_gbigint b, _ntl_gbigint *c);
        /* c gets bit pattern `bits of |a|` inclusive or `bits of |b|` */

    void _ntl_gxor(_ntl_gbigint a, _ntl_gbigint b, _ntl_gbigint *c);
        /* c gets bit pattern `bits of |a|` exclusive or `bits of |b|` */




/************************************************************************

   Comparison

*************************************************************************/

    long _ntl_gcompare(_ntl_gbigint a, _ntl_gbigint b);
       /*
          if (a > b)
              return (1);
          if (a == b)
              return (0);
          if (a < b)
              return (-1);
         */

    long _ntl_gscompare(_ntl_gbigint a, long b);
       /* single-precision version of the above */

    inline
    long _ntl_giszero (_ntl_gbigint a)
    {
      return _ntl_ZEROP(a);
    }
       /* test for 0 */


    inline
    long _ntl_gsign(_ntl_gbigint a)
    {
       long sa;

       if (!a) return 0;

       sa = _ntl_SIZE(a);
       if (sa > 0) return 1;
       if (sa == 0) return 0;
       return -1;
    }
       /* 
          if (a > 0)
              return (1);
          if (a == 0)
              return (0);
          if (a < 0)
              return (-1);
        */

    void _ntl_gabs(_ntl_gbigint *a);
       /* *a = |a| */

    void _ntl_gnegate(_ntl_gbigint *a);
       /* *a = -a */

    void _ntl_gcopy(_ntl_gbigint a, _ntl_gbigint *b);
       /* *b = a;  */

    void _ntl_gswap(_ntl_gbigint *a, _ntl_gbigint *b);
       /* swap a and b (by swaping pointers) */

    long _ntl_g2log(_ntl_gbigint a);
       /* number of bits in |a|; returns 0 if a = 0 */

    inline
    long _ntl_g2logs(long a)
        /* single-precision version of the above */
    {
       unsigned long aa = a >= 0 ? a : - ((unsigned long) a);
       return _ntl_count_bits(aa);
    }


/********************************************************************

   Conversion

*********************************************************************/
        
    void _ntl_gzero(_ntl_gbigint *a);
       /* *a = 0;  */

    void _ntl_gone(_ntl_gbigint *a);
       /* *a = 1 */

    void _ntl_gintoz(long d, _ntl_gbigint *a);
       /* *a = d;  */


    void _ntl_guintoz(unsigned long d, _ntl_gbigint *a);
       /* *a = d;  space is allocated  */

    long _ntl_gtoint(_ntl_gbigint a);
       /* converts a to a long;  overflow results in value
          mod 2^{NTL_BITS_PER_LONG}. */

    unsigned long _ntl_gtouint(_ntl_gbigint a);
       /* converts a to a long;  overflow results in value
          mod 2^{NTL_BITS_PER_LONG}. */

   


    double _ntl_gdoub(_ntl_gbigint n);
       /* converts a to a double;  no overflow check */

    long _ntl_ground_correction(_ntl_gbigint a, long k, long residual);
       /* k >= 1, |a| >= 2^k, and residual is 0, 1, or -1.
          The result is what we should add to (a >> k) to round
          x = a/2^k to the nearest integer using IEEE-like rounding rules
          (i.e., round to nearest, and round to even to break ties).
          The result is either 0 or sign(a).
          If residual is not zero, it is as if x were replaced by
          x' = x + residual*2^{-(k+1)}.
          This can be used to break ties when x is exactly
          half way between two integers. */

    double _ntl_glog(_ntl_gbigint a);
       /* computes log(a), protecting against overflow */

    void _ntl_gdoubtoz(double a, _ntl_gbigint *x);
       /* x = floor(a);  */
    



/************************************************************************

   Square roots

*************************************************************************/


    long _ntl_gsqrts(long n);
       /* return floor(sqrt(n));  error raised in n < 0 */

    void _ntl_gsqrt(_ntl_gbigint n, _ntl_gbigint *r);
       /* *r =  floor(sqrt(n));  error raised in n < 0 */

/*********************************************************************
 
    Exponentiation
 
**********************************************************************/

   void _ntl_gexp(_ntl_gbigint a, long e, _ntl_gbigint *b);
       /* *b = a^e;  error raised if e < 0 */

   void _ntl_gexps(long a, long e, _ntl_gbigint *b);
       /* *b = a^e;  error raised if e < 0 */
       

/*********************************************************************

   Modular Arithmetic

   Addition, subtraction, multiplication, squaring division, inversion,
   and exponentiation modulo a positive modulus n, where all operands
   (except for the exponent in exponentiation) and results are in the
   range [0, n-1].   

   ALIAS RESTRICTION:  output parameters should not alias n

***********************************************************************/

    void _ntl_gaddmod(_ntl_gbigint a, _ntl_gbigint b, _ntl_gbigint n, _ntl_gbigint *c);
       /* *c = (a + b) % n */

    void _ntl_gsubmod(_ntl_gbigint a, _ntl_gbigint b, _ntl_gbigint n, _ntl_gbigint *c);
       /* *c = (a - b) % n */

    void _ntl_gsmulmod(_ntl_gbigint a, long b, _ntl_gbigint n, _ntl_gbigint *c);
       /* *c = (a * b) % n */

    void _ntl_gmulmod(_ntl_gbigint a, _ntl_gbigint b, _ntl_gbigint n, _ntl_gbigint *c);
       /* *c = (a * b) % n */

    void _ntl_gsqmod(_ntl_gbigint a, _ntl_gbigint n, _ntl_gbigint *c);
       /* *c = (a ^ 2) % n */

    void _ntl_ginvmod(_ntl_gbigint a, _ntl_gbigint n, _ntl_gbigint *c);
       /* *c = (1 / a) % n; error raised if gcd(b, n) != 1 */

    void _ntl_gpowermod(_ntl_gbigint g, _ntl_gbigint e, _ntl_gbigint F,
                        _ntl_gbigint *h);

       /* *b = (a ^ e) % n; */




/**************************************************************************

   Euclidean Algorithms

***************************************************************************/
    void _ntl_ggcd(_ntl_gbigint m1, _ntl_gbigint m2, _ntl_gbigint *r);
       /* *r = greatest common divisor of m1 and m2;  */

    void _ntl_ggcd_alt(_ntl_gbigint m1, _ntl_gbigint m2, _ntl_gbigint *r);
       /* *r = greatest common divisor of m1 and m2;  
          a simpler algorithm used for validation
        */


    void _ntl_gexteucl(_ntl_gbigint a, _ntl_gbigint *xa,
                 _ntl_gbigint b, _ntl_gbigint *xb,
                 _ntl_gbigint *d);
       /*
          *d = a * *xa + b * *xb = gcd(a, b);
          sets *d, *xa and *xb given a and b;
        */


    long _ntl_ginv(_ntl_gbigint a, _ntl_gbigint b, _ntl_gbigint *c);
       /*
          if (a and b coprime)
          {
              *c = inv; 
              return(0);
          }
          else
          {
              *c = gcd(a, b);
              return(1);
          }
          
          where inv is such that (inv * a)  == 1 mod b;
          error raised if a < 0 or b <= 0
        */

     long _ntl_gxxratrecon(_ntl_gbigint x, _ntl_gbigint m,  
                      _ntl_gbigint a_bound, _ntl_gbigint b_bound,
                      _ntl_gbigint *a, _ntl_gbigint *b);

        /* rational reconstruction: see doc in ZZ.txt */


        
/**********************************************************************

    Storage Allocation

    These routines use malloc and free.

***********************************************************************/

    inline
    long _ntl_gmaxalloc(_ntl_gbigint x)
    {
      if (!x)
         return 0;
      else
         return _ntl_ALLOC(x) >> 2;
    }

    // DIRT: see lip.c for more info on ALLOC 

    void _ntl_gsetlength(_ntl_gbigint *v, long len);
       /* Allocates enough space to hold a len-digit number,
          where each digit has NTL_NBITS bits.
          If space must be allocated, space for one extra digit
          is always allocated. if (exact) then no rounding
          occurs. */

    void _ntl_gfree(_ntl_gbigint x);
       /* Free's space held by x. */


/*******************************************************************

    Special routines

********************************************************************/

inline
long _ntl_gsize(_ntl_gbigint rep)
{
  if (!rep)
      return 0;
   else if (_ntl_SIZE(rep) < 0)
      return -_ntl_SIZE(rep);
   else
      return _ntl_SIZE(rep);
}

long _ntl_gisone(_ntl_gbigint n);

long _ntl_gsptest(_ntl_gbigint a);
long _ntl_gwsptest(_ntl_gbigint a);
long _ntl_gcrtinrange(_ntl_gbigint g, _ntl_gbigint a);

void _ntl_gfrombytes(_ntl_gbigint *x, const unsigned char *p, long n);
void _ntl_gbytesfromz(unsigned char *p, _ntl_gbigint a, long nn);


long _ntl_gblock_construct_alloc(_ntl_gbigint *x, long d, long n);
void _ntl_gblock_construct_set(_ntl_gbigint x, _ntl_gbigint *y, long i);
long _ntl_gblock_destroy(_ntl_gbigint x);
long _ntl_gblock_storage(long d);



// These are common to both implementations

class _ntl_tmp_vec {
public:
   virtual ~_ntl_tmp_vec() { }
};

class _ntl_crt_struct {
public:
   virtual ~_ntl_crt_struct() { }
   virtual bool special() = 0;
   virtual void insert(long i, _ntl_gbigint m) = 0;
   virtual _ntl_tmp_vec *extract() = 0;
   virtual _ntl_tmp_vec *fetch() = 0;
   virtual void eval(_ntl_gbigint *x, const long *b, 
                     _ntl_tmp_vec *tmp_vec) = 0;
};

_ntl_crt_struct * 
_ntl_crt_struct_build(long n, _ntl_gbigint p, long (*primes)(long));

class _ntl_rem_struct {
public:
   virtual ~_ntl_rem_struct() { }
   virtual void eval(long *x, _ntl_gbigint a, _ntl_tmp_vec *tmp_vec) = 0;
   virtual _ntl_tmp_vec *fetch() = 0;
};

_ntl_rem_struct *
_ntl_rem_struct_build(long n, _ntl_gbigint modulus, long (*p)(long));


// montgomery
class _ntl_reduce_struct {
public:
   virtual ~_ntl_reduce_struct() { }
   virtual void eval(_ntl_gbigint *x, _ntl_gbigint *a) = 0;
   virtual void adjust(_ntl_gbigint *x) = 0;
};

_ntl_reduce_struct *
_ntl_reduce_struct_build(_ntl_gbigint modulus, _ntl_gbigint excess);


// faster reduction with preconditioning -- general usage, single modulus

class _ntl_general_rem_one_struct;

_ntl_general_rem_one_struct *
_ntl_general_rem_one_struct_build(long p);

long 
_ntl_general_rem_one_struct_apply(_ntl_gbigint a, long p, _ntl_general_rem_one_struct *pinfo);

void
_ntl_general_rem_one_struct_delete(_ntl_general_rem_one_struct *pinfo);

long _ntl_gvalidate(_ntl_gbigint a);


// special-purpose routines for accumulating CRT-like summations
void
_ntl_quick_accum_begin(_ntl_gbigint *xp, long sz);

void
_ntl_quick_accum_muladd(_ntl_gbigint x, _ntl_gbigint y, long b);

void
_ntl_quick_accum_end(_ntl_gbigint x);

#endif