This file is indexed.

/usr/include/NTL/ZZ_pXFactoring.h is in libntl-dev 10.5.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#ifndef NTL_ZZ_pXFactoring__H
#define NTL_ZZ_pXFactoring__H

#include <NTL/ZZ.h>
#include <NTL/ZZ_p.h>
#include <NTL/ZZ_pX.h>
#include <NTL/pair_ZZ_pX_long.h>

NTL_OPEN_NNS




/************************************************************

                      factorization routines 

************************************************************/





void SquareFreeDecomp(vec_pair_ZZ_pX_long& u, const ZZ_pX& f);
inline vec_pair_ZZ_pX_long SquareFreeDecomp(const ZZ_pX& f)
   { vec_pair_ZZ_pX_long x; SquareFreeDecomp(x, f); return x; }

// Performs square-free decomposition.
// f must be monic.
// If f = prod_i g_i^i, then u is set to a lest of pairs (g_i, i).
// The list is is increasing order of i, with trivial terms 
// (i.e., g_i = 1) deleted.


void FindRoots(vec_ZZ_p& x, const ZZ_pX& f);
inline vec_ZZ_p FindRoots(const ZZ_pX& f)
   { vec_ZZ_p x; FindRoots(x, f); return x; }

// f is monic, and has deg(f) distinct roots.
// returns the list of roots

void FindRoot(ZZ_p& root, const ZZ_pX& f);
inline ZZ_p FindRoot(const ZZ_pX& f)
   { ZZ_p x; FindRoot(x, f); return x; }

// finds a single root of f.
// assumes that f is monic and splits into distinct linear factors


void SFBerlekamp(vec_ZZ_pX& factors, const ZZ_pX& f, long verbose=0);
inline vec_ZZ_pX SFBerlekamp(const ZZ_pX& f, long verbose=0)
   { vec_ZZ_pX x; SFBerlekamp(x, f, verbose); return x; }

// Assumes f is square-free and monic.
// returns list of factors of f.
// Uses "Berlekamp" appraoch.


void berlekamp(vec_pair_ZZ_pX_long& factors, const ZZ_pX& f, long verbose=0);
inline vec_pair_ZZ_pX_long 
berlekamp(const ZZ_pX& f, long verbose=0)
   { vec_pair_ZZ_pX_long x; berlekamp(x, f, verbose); return x; }

// returns a list of factors, with multiplicities.
// f must be monic.
// Uses "Berlekamp" appraoch.


extern NTL_CHEAP_THREAD_LOCAL long ZZ_pX_BlockingFactor;
// Controls GCD blocking for DDF.

void DDF(vec_pair_ZZ_pX_long& factors, const ZZ_pX& f, const ZZ_pX& h,
         long verbose=0);

inline vec_pair_ZZ_pX_long DDF(const ZZ_pX& f, const ZZ_pX& h,
         long verbose=0)
   { vec_pair_ZZ_pX_long x; DDF(x, f, h, verbose); return x; }

// Performs distinct-degree factorization.
// Assumes f is monic and square-free,  and h  = X^p mod f
// Obsolete: see NewDDF, below.

extern NTL_CHEAP_THREAD_LOCAL long ZZ_pX_GCDTableSize; /* = 4 */
// Controls GCD blocking for NewDDF


extern NTL_CHEAP_THREAD_LOCAL double ZZ_pXFileThresh; 
// external files are used for baby/giant steps if size
// of these tables exceeds ZZ_pXFileThresh KB.

void NewDDF(vec_pair_ZZ_pX_long& factors, const ZZ_pX& f, const ZZ_pX& h,
         long verbose=0);

inline vec_pair_ZZ_pX_long NewDDF(const ZZ_pX& f, const ZZ_pX& h,
         long verbose=0)
   { vec_pair_ZZ_pX_long x; NewDDF(x, f, h, verbose); return x; }

// same as above, but uses baby-step/giant-step method


void EDF(vec_ZZ_pX& factors, const ZZ_pX& f, const ZZ_pX& b,
         long d, long verbose=0);

inline vec_ZZ_pX EDF(const ZZ_pX& f, const ZZ_pX& b,
         long d, long verbose=0)
   { vec_ZZ_pX x; EDF(x, f, b, d, verbose); return x; }

// Performs equal-degree factorization.
// f is monic, square-free, and all irreducible factors have same degree.
// b = X^p mod f.
// d = degree of irreducible factors of f
// Space for the trace-map computation can be controlled via ComposeBound.



void RootEDF(vec_ZZ_pX& factors, const ZZ_pX& f, long verbose=0);
inline vec_ZZ_pX RootEDF(const ZZ_pX& f, long verbose=0)
   { vec_ZZ_pX x; RootEDF(x, f, verbose); return x; }

// EDF for d==1

void SFCanZass(vec_ZZ_pX& factors, const ZZ_pX& f, long verbose=0);
inline vec_ZZ_pX SFCanZass(const ZZ_pX& f, long verbose=0)
   { vec_ZZ_pX x; SFCanZass(x, f, verbose); return x; }

// Assumes f is monic and square-free.
// returns list of factors of f.
// Uses "Cantor/Zassenhaus" approach.



void CanZass(vec_pair_ZZ_pX_long& factors, const ZZ_pX& f, 
      long verbose=0);

inline vec_pair_ZZ_pX_long CanZass(const ZZ_pX& f, long verbose=0)
   { vec_pair_ZZ_pX_long x; CanZass(x, f, verbose); return x; }

// returns a list of factors, with multiplicities.
// f must be monic.
// Uses "Cantor/Zassenhaus" approach.


void mul(ZZ_pX& f, const vec_pair_ZZ_pX_long& v);
inline ZZ_pX mul(const vec_pair_ZZ_pX_long& v)
   { ZZ_pX x; mul(x, v); return x; }

// multiplies polynomials, with multiplicities


/*************************************************************

            irreducible poly's:  tests and constructions

**************************************************************/

long ProbIrredTest(const ZZ_pX& f, long iter=1);

// performs a fast, probabilistic irreduciblity test
// the test can err only if f is reducible, and the
// error probability is bounded by p^{-iter}.

long DetIrredTest(const ZZ_pX& f);

// performs a recursive deterministic irreducibility test
// fast in the worst-case (when input is irreducible).

long IterIrredTest(const ZZ_pX& f);

// performs an iterative deterministic irreducibility test,
// based on DDF.  Fast on average (when f has a small factor).

void BuildIrred(ZZ_pX& f, long n);
inline ZZ_pX BuildIrred_ZZ_pX(long n)
   { ZZ_pX x; BuildIrred(x, n); NTL_OPT_RETURN(ZZ_pX, x); }

// Build a monic irreducible poly of degree n.

void BuildRandomIrred(ZZ_pX& f, const ZZ_pX& g);
inline ZZ_pX BuildRandomIrred(const ZZ_pX& g)
   { ZZ_pX x; BuildRandomIrred(x, g); NTL_OPT_RETURN(ZZ_pX, x); }

// g is a monic irreducible polynomial.
// constructs a random monic irreducible polynomial f of the same degree.


long ComputeDegree(const ZZ_pX& h, const ZZ_pXModulus& F);

// f = F.f is assumed to be an "equal degree" polynomial
// h = X^p mod f
// the common degree of the irreducible factors of f is computed
// This routine is useful in counting points on elliptic curves

long ProbComputeDegree(const ZZ_pX& h, const ZZ_pXModulus& F);

// same as above, but uses a slightly faster probabilistic algorithm
// the return value may be 0 or may be too big, but for large p
// (relative to n), this happens with very low probability.



void TraceMap(ZZ_pX& w, const ZZ_pX& a, long d, const ZZ_pXModulus& F,
              const ZZ_pX& b);

inline ZZ_pX TraceMap(const ZZ_pX& a, long d, const ZZ_pXModulus& F,
              const ZZ_pX& b)
   { ZZ_pX x; TraceMap(x, a, d, F, b); return x; }

// w = a+a^q+...+^{q^{d-1}} mod f;
// it is assumed that d >= 0, and b = X^q mod f, q a power of p
// Space allocation can be controlled via ComposeBound (see <NTL/ZZ_pX.h>)



void PowerCompose(ZZ_pX& w, const ZZ_pX& a, long d, const ZZ_pXModulus& F);
inline ZZ_pX PowerCompose(const ZZ_pX& a, long d, const ZZ_pXModulus& F)
   { ZZ_pX x; PowerCompose(x, a, d, F); return x; }

// w = X^{q^d} mod f;
// it is assumed that d >= 0, and b = X^q mod f, q a power of p
// Space allocation can be controlled via ComposeBound (see <NTL/ZZ_pX.h>)


NTL_CLOSE_NNS

#endif