/usr/include/mozjs-38/mozilla/CheckedInt.h is in libmozjs-38-dev 38.8.0~repack1-0ubuntu4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 | /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/* Provides checked integers, detecting integer overflow and divide-by-0. */
#ifndef mozilla_CheckedInt_h
#define mozilla_CheckedInt_h
#include <stdint.h>
#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/IntegerTypeTraits.h"
namespace mozilla {
template<typename T> class CheckedInt;
namespace detail {
/*
* Step 1: manually record supported types
*
* What's nontrivial here is that there are different families of integer
* types: basic integer types and stdint types. It is merrily undefined which
* types from one family may be just typedefs for a type from another family.
*
* For example, on GCC 4.6, aside from the basic integer types, the only other
* type that isn't just a typedef for some of them, is int8_t.
*/
struct UnsupportedType {};
template<typename IntegerType>
struct IsSupportedPass2
{
static const bool value = false;
};
template<typename IntegerType>
struct IsSupported
{
static const bool value = IsSupportedPass2<IntegerType>::value;
};
template<>
struct IsSupported<int8_t>
{ static const bool value = true; };
template<>
struct IsSupported<uint8_t>
{ static const bool value = true; };
template<>
struct IsSupported<int16_t>
{ static const bool value = true; };
template<>
struct IsSupported<uint16_t>
{ static const bool value = true; };
template<>
struct IsSupported<int32_t>
{ static const bool value = true; };
template<>
struct IsSupported<uint32_t>
{ static const bool value = true; };
template<>
struct IsSupported<int64_t>
{ static const bool value = true; };
template<>
struct IsSupported<uint64_t>
{ static const bool value = true; };
template<>
struct IsSupportedPass2<char>
{ static const bool value = true; };
template<>
struct IsSupportedPass2<signed char>
{ static const bool value = true; };
template<>
struct IsSupportedPass2<unsigned char>
{ static const bool value = true; };
template<>
struct IsSupportedPass2<short>
{ static const bool value = true; };
template<>
struct IsSupportedPass2<unsigned short>
{ static const bool value = true; };
template<>
struct IsSupportedPass2<int>
{ static const bool value = true; };
template<>
struct IsSupportedPass2<unsigned int>
{ static const bool value = true; };
template<>
struct IsSupportedPass2<long>
{ static const bool value = true; };
template<>
struct IsSupportedPass2<unsigned long>
{ static const bool value = true; };
template<>
struct IsSupportedPass2<long long>
{ static const bool value = true; };
template<>
struct IsSupportedPass2<unsigned long long>
{ static const bool value = true; };
/*
* Step 2: Implement the actual validity checks.
*
* Ideas taken from IntegerLib, code different.
*/
template<typename IntegerType, size_t Size = sizeof(IntegerType)>
struct TwiceBiggerType
{
typedef typename detail::StdintTypeForSizeAndSignedness<
sizeof(IntegerType) * 2,
IsSigned<IntegerType>::value
>::Type Type;
};
template<typename IntegerType>
struct TwiceBiggerType<IntegerType, 8>
{
typedef UnsupportedType Type;
};
template<typename T>
inline bool
HasSignBit(T aX)
{
// In C++, right bit shifts on negative values is undefined by the standard.
// Notice that signed-to-unsigned conversions are always well-defined in the
// standard, as the value congruent modulo 2**n as expected. By contrast,
// unsigned-to-signed is only well-defined if the value is representable.
return bool(typename MakeUnsigned<T>::Type(aX) >>
PositionOfSignBit<T>::value);
}
// Bitwise ops may return a larger type, so it's good to use this inline
// helper guaranteeing that the result is really of type T.
template<typename T>
inline T
BinaryComplement(T aX)
{
return ~aX;
}
template<typename T,
typename U,
bool IsTSigned = IsSigned<T>::value,
bool IsUSigned = IsSigned<U>::value>
struct DoesRangeContainRange
{
};
template<typename T, typename U, bool Signedness>
struct DoesRangeContainRange<T, U, Signedness, Signedness>
{
static const bool value = sizeof(T) >= sizeof(U);
};
template<typename T, typename U>
struct DoesRangeContainRange<T, U, true, false>
{
static const bool value = sizeof(T) > sizeof(U);
};
template<typename T, typename U>
struct DoesRangeContainRange<T, U, false, true>
{
static const bool value = false;
};
template<typename T,
typename U,
bool IsTSigned = IsSigned<T>::value,
bool IsUSigned = IsSigned<U>::value,
bool DoesTRangeContainURange = DoesRangeContainRange<T, U>::value>
struct IsInRangeImpl {};
template<typename T, typename U, bool IsTSigned, bool IsUSigned>
struct IsInRangeImpl<T, U, IsTSigned, IsUSigned, true>
{
static bool run(U)
{
return true;
}
};
template<typename T, typename U>
struct IsInRangeImpl<T, U, true, true, false>
{
static bool run(U aX)
{
return aX <= MaxValue<T>::value && aX >= MinValue<T>::value;
}
};
template<typename T, typename U>
struct IsInRangeImpl<T, U, false, false, false>
{
static bool run(U aX)
{
return aX <= MaxValue<T>::value;
}
};
template<typename T, typename U>
struct IsInRangeImpl<T, U, true, false, false>
{
static bool run(U aX)
{
return sizeof(T) > sizeof(U) || aX <= U(MaxValue<T>::value);
}
};
template<typename T, typename U>
struct IsInRangeImpl<T, U, false, true, false>
{
static bool run(U aX)
{
return sizeof(T) >= sizeof(U)
? aX >= 0
: aX >= 0 && aX <= U(MaxValue<T>::value);
}
};
template<typename T, typename U>
inline bool
IsInRange(U aX)
{
return IsInRangeImpl<T, U>::run(aX);
}
template<typename T>
inline bool
IsAddValid(T aX, T aY)
{
// Addition is valid if the sign of aX+aY is equal to either that of aX or
// that of aY. Since the value of aX+aY is undefined if we have a signed
// type, we compute it using the unsigned type of the same size. Beware!
// These bitwise operations can return a larger integer type, if T was a
// small type like int8_t, so we explicitly cast to T.
typename MakeUnsigned<T>::Type ux = aX;
typename MakeUnsigned<T>::Type uy = aY;
typename MakeUnsigned<T>::Type result = ux + uy;
return IsSigned<T>::value
? HasSignBit(BinaryComplement(T((result ^ aX) & (result ^ aY))))
: BinaryComplement(aX) >= aY;
}
template<typename T>
inline bool
IsSubValid(T aX, T aY)
{
// Subtraction is valid if either aX and aY have same sign, or aX-aY and aX
// have same sign. Since the value of aX-aY is undefined if we have a signed
// type, we compute it using the unsigned type of the same size.
typename MakeUnsigned<T>::Type ux = aX;
typename MakeUnsigned<T>::Type uy = aY;
typename MakeUnsigned<T>::Type result = ux - uy;
return IsSigned<T>::value
? HasSignBit(BinaryComplement(T((result ^ aX) & (aX ^ aY))))
: aX >= aY;
}
template<typename T,
bool IsTSigned = IsSigned<T>::value,
bool TwiceBiggerTypeIsSupported =
IsSupported<typename TwiceBiggerType<T>::Type>::value>
struct IsMulValidImpl {};
template<typename T, bool IsTSigned>
struct IsMulValidImpl<T, IsTSigned, true>
{
static bool run(T aX, T aY)
{
typedef typename TwiceBiggerType<T>::Type TwiceBiggerType;
TwiceBiggerType product = TwiceBiggerType(aX) * TwiceBiggerType(aY);
return IsInRange<T>(product);
}
};
template<typename T>
struct IsMulValidImpl<T, true, false>
{
static bool run(T aX, T aY)
{
const T max = MaxValue<T>::value;
const T min = MinValue<T>::value;
if (aX == 0 || aY == 0) {
return true;
}
if (aX > 0) {
return aY > 0
? aX <= max / aY
: aY >= min / aX;
}
// If we reach this point, we know that aX < 0.
return aY > 0
? aX >= min / aY
: aY >= max / aX;
}
};
template<typename T>
struct IsMulValidImpl<T, false, false>
{
static bool run(T aX, T aY)
{
return aY == 0 || aX <= MaxValue<T>::value / aY;
}
};
template<typename T>
inline bool
IsMulValid(T aX, T aY)
{
return IsMulValidImpl<T>::run(aX, aY);
}
template<typename T>
inline bool
IsDivValid(T aX, T aY)
{
// Keep in mind that in the signed case, min/-1 is invalid because
// abs(min)>max.
return aY != 0 &&
!(IsSigned<T>::value && aX == MinValue<T>::value && aY == T(-1));
}
template<typename T, bool IsTSigned = IsSigned<T>::value>
struct IsModValidImpl;
template<typename T>
inline bool
IsModValid(T aX, T aY)
{
return IsModValidImpl<T>::run(aX, aY);
}
/*
* Mod is pretty simple.
* For now, let's just use the ANSI C definition:
* If aX or aY are negative, the results are implementation defined.
* Consider these invalid.
* Undefined for aY=0.
* The result will never exceed either aX or aY.
*
* Checking that aX>=0 is a warning when T is unsigned.
*/
template<typename T>
struct IsModValidImpl<T, false>
{
static inline bool run(T aX, T aY)
{
return aY >= 1;
}
};
template<typename T>
struct IsModValidImpl<T, true>
{
static inline bool run(T aX, T aY)
{
if (aX < 0) {
return false;
}
return aY >= 1;
}
};
template<typename T, bool IsSigned = IsSigned<T>::value>
struct NegateImpl;
template<typename T>
struct NegateImpl<T, false>
{
static CheckedInt<T> negate(const CheckedInt<T>& aVal)
{
// Handle negation separately for signed/unsigned, for simpler code and to
// avoid an MSVC warning negating an unsigned value.
return CheckedInt<T>(0, aVal.isValid() && aVal.mValue == 0);
}
};
template<typename T>
struct NegateImpl<T, true>
{
static CheckedInt<T> negate(const CheckedInt<T>& aVal)
{
// Watch out for the min-value, which (with twos-complement) can't be
// negated as -min-value is then (max-value + 1).
if (!aVal.isValid() || aVal.mValue == MinValue<T>::value) {
return CheckedInt<T>(aVal.mValue, false);
}
return CheckedInt<T>(-aVal.mValue, true);
}
};
} // namespace detail
/*
* Step 3: Now define the CheckedInt class.
*/
/**
* @class CheckedInt
* @brief Integer wrapper class checking for integer overflow and other errors
* @param T the integer type to wrap. Can be any type among the following:
* - any basic integer type such as |int|
* - any stdint type such as |int8_t|
*
* This class implements guarded integer arithmetic. Do a computation, check
* that isValid() returns true, you then have a guarantee that no problem, such
* as integer overflow, happened during this computation, and you can call
* value() to get the plain integer value.
*
* The arithmetic operators in this class are guaranteed not to raise a signal
* (e.g. in case of a division by zero).
*
* For example, suppose that you want to implement a function that computes
* (aX+aY)/aZ, that doesn't crash if aZ==0, and that reports on error (divide by
* zero or integer overflow). You could code it as follows:
@code
bool computeXPlusYOverZ(int aX, int aY, int aZ, int* aResult)
{
CheckedInt<int> checkedResult = (CheckedInt<int>(aX) + aY) / aZ;
if (checkedResult.isValid()) {
*aResult = checkedResult.value();
return true;
} else {
return false;
}
}
@endcode
*
* Implicit conversion from plain integers to checked integers is allowed. The
* plain integer is checked to be in range before being casted to the
* destination type. This means that the following lines all compile, and the
* resulting CheckedInts are correctly detected as valid or invalid:
* @code
// 1 is of type int, is found to be in range for uint8_t, x is valid
CheckedInt<uint8_t> x(1);
// -1 is of type int, is found not to be in range for uint8_t, x is invalid
CheckedInt<uint8_t> x(-1);
// -1 is of type int, is found to be in range for int8_t, x is valid
CheckedInt<int8_t> x(-1);
// 1000 is of type int16_t, is found not to be in range for int8_t,
// x is invalid
CheckedInt<int8_t> x(int16_t(1000));
// 3123456789 is of type uint32_t, is found not to be in range for int32_t,
// x is invalid
CheckedInt<int32_t> x(uint32_t(3123456789));
* @endcode
* Implicit conversion from
* checked integers to plain integers is not allowed. As shown in the
* above example, to get the value of a checked integer as a normal integer,
* call value().
*
* Arithmetic operations between checked and plain integers is allowed; the
* result type is the type of the checked integer.
*
* Checked integers of different types cannot be used in the same arithmetic
* expression.
*
* There are convenience typedefs for all stdint types, of the following form
* (these are just 2 examples):
@code
typedef CheckedInt<int32_t> CheckedInt32;
typedef CheckedInt<uint16_t> CheckedUint16;
@endcode
*/
template<typename T>
class CheckedInt
{
protected:
T mValue;
bool mIsValid;
template<typename U>
CheckedInt(U aValue, bool aIsValid) : mValue(aValue), mIsValid(aIsValid)
{
static_assert(detail::IsSupported<T>::value &&
detail::IsSupported<U>::value,
"This type is not supported by CheckedInt");
}
friend struct detail::NegateImpl<T>;
public:
/**
* Constructs a checked integer with given @a value. The checked integer is
* initialized as valid or invalid depending on whether the @a value
* is in range.
*
* This constructor is not explicit. Instead, the type of its argument is a
* separate template parameter, ensuring that no conversion is performed
* before this constructor is actually called. As explained in the above
* documentation for class CheckedInt, this constructor checks that its
* argument is valid.
*/
template<typename U>
CheckedInt(U aValue) MOZ_NO_ARITHMETIC_EXPR_IN_ARGUMENT
: mValue(T(aValue)),
mIsValid(detail::IsInRange<T>(aValue))
{
static_assert(detail::IsSupported<T>::value &&
detail::IsSupported<U>::value,
"This type is not supported by CheckedInt");
}
template<typename U>
friend class CheckedInt;
template<typename U>
CheckedInt<U> toChecked() const
{
CheckedInt<U> ret(mValue);
ret.mIsValid = ret.mIsValid && mIsValid;
return ret;
}
/** Constructs a valid checked integer with initial value 0 */
CheckedInt() : mValue(0), mIsValid(true)
{
static_assert(detail::IsSupported<T>::value,
"This type is not supported by CheckedInt");
}
/** @returns the actual value */
T value() const
{
MOZ_ASSERT(mIsValid, "Invalid checked integer (division by zero or integer overflow)");
return mValue;
}
/**
* @returns true if the checked integer is valid, i.e. is not the result
* of an invalid operation or of an operation involving an invalid checked
* integer
*/
bool isValid() const
{
return mIsValid;
}
template<typename U>
friend CheckedInt<U> operator +(const CheckedInt<U>& aLhs,
const CheckedInt<U>& aRhs);
template<typename U>
CheckedInt& operator +=(U aRhs);
CheckedInt& operator +=(const CheckedInt<T>& aRhs);
template<typename U>
friend CheckedInt<U> operator -(const CheckedInt<U>& aLhs,
const CheckedInt<U>& aRhs);
template<typename U>
CheckedInt& operator -=(U aRhs);
CheckedInt& operator -=(const CheckedInt<T>& aRhs);
template<typename U>
friend CheckedInt<U> operator *(const CheckedInt<U>& aLhs,
const CheckedInt<U>& aRhs);
template<typename U>
CheckedInt& operator *=(U aRhs);
CheckedInt& operator *=(const CheckedInt<T>& aRhs);
template<typename U>
friend CheckedInt<U> operator /(const CheckedInt<U>& aLhs,
const CheckedInt<U>& aRhs);
template<typename U>
CheckedInt& operator /=(U aRhs);
CheckedInt& operator /=(const CheckedInt<T>& aRhs);
template<typename U>
friend CheckedInt<U> operator %(const CheckedInt<U>& aLhs,
const CheckedInt<U>& aRhs);
template<typename U>
CheckedInt& operator %=(U aRhs);
CheckedInt& operator %=(const CheckedInt<T>& aRhs);
CheckedInt operator -() const
{
return detail::NegateImpl<T>::negate(*this);
}
/**
* @returns true if the left and right hand sides are valid
* and have the same value.
*
* Note that these semantics are the reason why we don't offer
* a operator!=. Indeed, we'd want to have a!=b be equivalent to !(a==b)
* but that would mean that whenever a or b is invalid, a!=b
* is always true, which would be very confusing.
*
* For similar reasons, operators <, >, <=, >= would be very tricky to
* specify, so we just avoid offering them.
*
* Notice that these == semantics are made more reasonable by these facts:
* 1. a==b implies equality at the raw data level
* (the converse is false, as a==b is never true among invalids)
* 2. This is similar to the behavior of IEEE floats, where a==b
* means that a and b have the same value *and* neither is NaN.
*/
bool operator ==(const CheckedInt& aOther) const
{
return mIsValid && aOther.mIsValid && mValue == aOther.mValue;
}
/** prefix ++ */
CheckedInt& operator++()
{
*this += 1;
return *this;
}
/** postfix ++ */
CheckedInt operator++(int)
{
CheckedInt tmp = *this;
*this += 1;
return tmp;
}
/** prefix -- */
CheckedInt& operator--()
{
*this -= 1;
return *this;
}
/** postfix -- */
CheckedInt operator--(int)
{
CheckedInt tmp = *this;
*this -= 1;
return tmp;
}
private:
/**
* The !=, <, <=, >, >= operators are disabled:
* see the comment on operator==.
*/
template<typename U> bool operator !=(U aOther) const = delete;
template<typename U> bool operator < (U aOther) const = delete;
template<typename U> bool operator <=(U aOther) const = delete;
template<typename U> bool operator > (U aOther) const = delete;
template<typename U> bool operator >=(U aOther) const = delete;
};
#define MOZ_CHECKEDINT_BASIC_BINARY_OPERATOR(NAME, OP) \
template<typename T> \
inline CheckedInt<T> \
operator OP(const CheckedInt<T>& aLhs, const CheckedInt<T>& aRhs) \
{ \
if (!detail::Is##NAME##Valid(aLhs.mValue, aRhs.mValue)) { \
return CheckedInt<T>(0, false); \
} \
return CheckedInt<T>(aLhs.mValue OP aRhs.mValue, \
aLhs.mIsValid && aRhs.mIsValid); \
}
MOZ_CHECKEDINT_BASIC_BINARY_OPERATOR(Add, +)
MOZ_CHECKEDINT_BASIC_BINARY_OPERATOR(Sub, -)
MOZ_CHECKEDINT_BASIC_BINARY_OPERATOR(Mul, *)
MOZ_CHECKEDINT_BASIC_BINARY_OPERATOR(Div, /)
MOZ_CHECKEDINT_BASIC_BINARY_OPERATOR(Mod, %)
#undef MOZ_CHECKEDINT_BASIC_BINARY_OPERATOR
// Implement castToCheckedInt<T>(x), making sure that
// - it allows x to be either a CheckedInt<T> or any integer type
// that can be casted to T
// - if x is already a CheckedInt<T>, we just return a reference to it,
// instead of copying it (optimization)
namespace detail {
template<typename T, typename U>
struct CastToCheckedIntImpl
{
typedef CheckedInt<T> ReturnType;
static CheckedInt<T> run(U aU) { return aU; }
};
template<typename T>
struct CastToCheckedIntImpl<T, CheckedInt<T> >
{
typedef const CheckedInt<T>& ReturnType;
static const CheckedInt<T>& run(const CheckedInt<T>& aU) { return aU; }
};
} // namespace detail
template<typename T, typename U>
inline typename detail::CastToCheckedIntImpl<T, U>::ReturnType
castToCheckedInt(U aU)
{
static_assert(detail::IsSupported<T>::value &&
detail::IsSupported<U>::value,
"This type is not supported by CheckedInt");
return detail::CastToCheckedIntImpl<T, U>::run(aU);
}
#define MOZ_CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(OP, COMPOUND_OP) \
template<typename T> \
template<typename U> \
CheckedInt<T>& CheckedInt<T>::operator COMPOUND_OP(U aRhs) \
{ \
*this = *this OP castToCheckedInt<T>(aRhs); \
return *this; \
} \
template<typename T> \
CheckedInt<T>& CheckedInt<T>::operator COMPOUND_OP(const CheckedInt<T>& aRhs) \
{ \
*this = *this OP aRhs; \
return *this; \
} \
template<typename T, typename U> \
inline CheckedInt<T> operator OP(const CheckedInt<T>& aLhs, U aRhs) \
{ \
return aLhs OP castToCheckedInt<T>(aRhs); \
} \
template<typename T, typename U> \
inline CheckedInt<T> operator OP(U aLhs, const CheckedInt<T>& aRhs) \
{ \
return castToCheckedInt<T>(aLhs) OP aRhs; \
}
MOZ_CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(+, +=)
MOZ_CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(*, *=)
MOZ_CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(-, -=)
MOZ_CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(/, /=)
MOZ_CHECKEDINT_CONVENIENCE_BINARY_OPERATORS(%, %=)
#undef MOZ_CHECKEDINT_CONVENIENCE_BINARY_OPERATORS
template<typename T, typename U>
inline bool
operator ==(const CheckedInt<T>& aLhs, U aRhs)
{
return aLhs == castToCheckedInt<T>(aRhs);
}
template<typename T, typename U>
inline bool
operator ==(U aLhs, const CheckedInt<T>& aRhs)
{
return castToCheckedInt<T>(aLhs) == aRhs;
}
// Convenience typedefs.
typedef CheckedInt<int8_t> CheckedInt8;
typedef CheckedInt<uint8_t> CheckedUint8;
typedef CheckedInt<int16_t> CheckedInt16;
typedef CheckedInt<uint16_t> CheckedUint16;
typedef CheckedInt<int32_t> CheckedInt32;
typedef CheckedInt<uint32_t> CheckedUint32;
typedef CheckedInt<int64_t> CheckedInt64;
typedef CheckedInt<uint64_t> CheckedUint64;
} // namespace mozilla
#endif /* mozilla_CheckedInt_h */
|