This file is indexed.

/usr/include/mozjs-38/mozilla/Atomics.h is in libmozjs-38-dev 38.8.0~repack1-0ubuntu4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

/*
 * Implements (almost always) lock-free atomic operations. The operations here
 * are a subset of that which can be found in C++11's <atomic> header, with a
 * different API to enforce consistent memory ordering constraints.
 *
 * Anyone caught using |volatile| for inter-thread memory safety needs to be
 * sent a copy of this header and the C++11 standard.
 */

#ifndef mozilla_Atomics_h
#define mozilla_Atomics_h

#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/Compiler.h"
#include "mozilla/TypeTraits.h"

#include <stdint.h>

/*
 * Our minimum deployment target on clang/OS X is OS X 10.6, whose SDK
 * does not have <atomic>.  So be sure to check for <atomic> support
 * along with C++0x support.
 */
#if defined(__clang__) || defined(__GNUC__)
   /*
    * Clang doesn't like <atomic> from libstdc++ before 4.7 due to the
    * loose typing of the atomic builtins. GCC 4.5 and 4.6 lacks inline
    * definitions for unspecialized std::atomic and causes linking errors.
    * Therefore, we require at least 4.7.0 for using libstdc++.
    *
    * libc++ <atomic> is only functional with clang.
    */
#  if MOZ_USING_LIBSTDCXX && MOZ_LIBSTDCXX_VERSION_AT_LEAST(4, 7, 0)
#    define MOZ_HAVE_CXX11_ATOMICS
#  elif MOZ_USING_LIBCXX && defined(__clang__)
#    define MOZ_HAVE_CXX11_ATOMICS
#  endif
#elif defined(_MSC_VER)
#  define MOZ_HAVE_CXX11_ATOMICS
#endif

namespace mozilla {

/**
 * An enum of memory ordering possibilities for atomics.
 *
 * Memory ordering is the observable state of distinct values in memory.
 * (It's a separate concept from atomicity, which concerns whether an
 * operation can ever be observed in an intermediate state.  Don't
 * conflate the two!)  Given a sequence of operations in source code on
 * memory, it is *not* always the case that, at all times and on all
 * cores, those operations will appear to have occurred in that exact
 * sequence.  First, the compiler might reorder that sequence, if it
 * thinks another ordering will be more efficient.  Second, the CPU may
 * not expose so consistent a view of memory.  CPUs will often perform
 * their own instruction reordering, above and beyond that performed by
 * the compiler.  And each core has its own memory caches, and accesses
 * (reads and writes both) to "memory" may only resolve to out-of-date
 * cache entries -- not to the "most recently" performed operation in
 * some global sense.  Any access to a value that may be used by
 * multiple threads, potentially across multiple cores, must therefore
 * have a memory ordering imposed on it, for all code on all
 * threads/cores to have a sufficiently coherent worldview.
 *
 * http://gcc.gnu.org/wiki/Atomic/GCCMM/AtomicSync and
 * http://en.cppreference.com/w/cpp/atomic/memory_order go into more
 * detail on all this, including examples of how each mode works.
 *
 * Note that for simplicity and practicality, not all of the modes in
 * C++11 are supported.  The missing C++11 modes are either subsumed by
 * the modes we provide below, or not relevant for the CPUs we support
 * in Gecko.  These three modes are confusing enough as it is!
 */
enum MemoryOrdering {
  /*
   * Relaxed ordering is the simplest memory ordering: none at all.
   * When the result of a write is observed, nothing may be inferred
   * about other memory.  Writes ostensibly performed "before" on the
   * writing thread may not yet be visible.  Writes performed "after" on
   * the writing thread may already be visible, if the compiler or CPU
   * reordered them.  (The latter can happen if reads and/or writes get
   * held up in per-processor caches.)  Relaxed ordering means
   * operations can always use cached values (as long as the actual
   * updates to atomic values actually occur, correctly, eventually), so
   * it's usually the fastest sort of atomic access.  For this reason,
   * *it's also the most dangerous kind of access*.
   *
   * Relaxed ordering is good for things like process-wide statistics
   * counters that don't need to be consistent with anything else, so
   * long as updates themselves are atomic.  (And so long as any
   * observations of that value can tolerate being out-of-date -- if you
   * need some sort of up-to-date value, you need some sort of other
   * synchronizing operation.)  It's *not* good for locks, mutexes,
   * reference counts, etc. that mediate access to other memory, or must
   * be observably consistent with other memory.
   *
   * x86 architectures don't take advantage of the optimization
   * opportunities that relaxed ordering permits.  Thus it's possible
   * that using relaxed ordering will "work" on x86 but fail elsewhere
   * (ARM, say, which *does* implement non-sequentially-consistent
   * relaxed ordering semantics).  Be extra-careful using relaxed
   * ordering if you can't easily test non-x86 architectures!
   */
  Relaxed,

  /*
   * When an atomic value is updated with ReleaseAcquire ordering, and
   * that new value is observed with ReleaseAcquire ordering, prior
   * writes (atomic or not) are also observable.  What ReleaseAcquire
   * *doesn't* give you is any observable ordering guarantees for
   * ReleaseAcquire-ordered operations on different objects.  For
   * example, if there are two cores that each perform ReleaseAcquire
   * operations on separate objects, each core may or may not observe
   * the operations made by the other core.  The only way the cores can
   * be synchronized with ReleaseAcquire is if they both
   * ReleaseAcquire-access the same object.  This implies that you can't
   * necessarily describe some global total ordering of ReleaseAcquire
   * operations.
   *
   * ReleaseAcquire ordering is good for (as the name implies) atomic
   * operations on values controlling ownership of things: reference
   * counts, mutexes, and the like.  However, if you are thinking about
   * using these to implement your own locks or mutexes, you should take
   * a good, hard look at actual lock or mutex primitives first.
   */
  ReleaseAcquire,

  /*
   * When an atomic value is updated with SequentiallyConsistent
   * ordering, all writes observable when the update is observed, just
   * as with ReleaseAcquire ordering.  But, furthermore, a global total
   * ordering of SequentiallyConsistent operations *can* be described.
   * For example, if two cores perform SequentiallyConsistent operations
   * on separate objects, one core will observably perform its update
   * (and all previous operations will have completed), then the other
   * core will observably perform its update (and all previous
   * operations will have completed).  (Although those previous
   * operations aren't themselves ordered -- they could be intermixed,
   * or ordered if they occur on atomic values with ordering
   * requirements.)  SequentiallyConsistent is the *simplest and safest*
   * ordering of atomic operations -- it's always as if one operation
   * happens, then another, then another, in some order -- and every
   * core observes updates to happen in that single order.  Because it
   * has the most synchronization requirements, operations ordered this
   * way also tend to be slowest.
   *
   * SequentiallyConsistent ordering can be desirable when multiple
   * threads observe objects, and they all have to agree on the
   * observable order of changes to them.  People expect
   * SequentiallyConsistent ordering, even if they shouldn't, when
   * writing code, atomic or otherwise.  SequentiallyConsistent is also
   * the ordering of choice when designing lockless data structures.  If
   * you don't know what order to use, use this one.
   */
  SequentiallyConsistent,
};

} // namespace mozilla

// Build up the underlying intrinsics.
#ifdef MOZ_HAVE_CXX11_ATOMICS

#  include <atomic>

namespace mozilla {
namespace detail {

/*
 * We provide CompareExchangeFailureOrder to work around a bug in some
 * versions of GCC's <atomic> header.  See bug 898491.
 */
template<MemoryOrdering Order> struct AtomicOrderConstraints;

template<>
struct AtomicOrderConstraints<Relaxed>
{
  static const std::memory_order AtomicRMWOrder = std::memory_order_relaxed;
  static const std::memory_order LoadOrder = std::memory_order_relaxed;
  static const std::memory_order StoreOrder = std::memory_order_relaxed;
  static const std::memory_order CompareExchangeFailureOrder =
    std::memory_order_relaxed;
};

template<>
struct AtomicOrderConstraints<ReleaseAcquire>
{
  static const std::memory_order AtomicRMWOrder = std::memory_order_acq_rel;
  static const std::memory_order LoadOrder = std::memory_order_acquire;
  static const std::memory_order StoreOrder = std::memory_order_release;
  static const std::memory_order CompareExchangeFailureOrder =
    std::memory_order_acquire;
};

template<>
struct AtomicOrderConstraints<SequentiallyConsistent>
{
  static const std::memory_order AtomicRMWOrder = std::memory_order_seq_cst;
  static const std::memory_order LoadOrder = std::memory_order_seq_cst;
  static const std::memory_order StoreOrder = std::memory_order_seq_cst;
  static const std::memory_order CompareExchangeFailureOrder =
    std::memory_order_seq_cst;
};

template<typename T, MemoryOrdering Order>
struct IntrinsicBase
{
  typedef std::atomic<T> ValueType;
  typedef AtomicOrderConstraints<Order> OrderedOp;
};

template<typename T, MemoryOrdering Order>
struct IntrinsicMemoryOps : public IntrinsicBase<T, Order>
{
  typedef IntrinsicBase<T, Order> Base;

  static T load(const typename Base::ValueType& aPtr)
  {
    return aPtr.load(Base::OrderedOp::LoadOrder);
  }

  static void store(typename Base::ValueType& aPtr, T aVal)
  {
    aPtr.store(aVal, Base::OrderedOp::StoreOrder);
  }

  static T exchange(typename Base::ValueType& aPtr, T aVal)
  {
    return aPtr.exchange(aVal, Base::OrderedOp::AtomicRMWOrder);
  }

  static bool compareExchange(typename Base::ValueType& aPtr,
                              T aOldVal, T aNewVal)
  {
    return aPtr.compare_exchange_strong(aOldVal, aNewVal,
                                        Base::OrderedOp::AtomicRMWOrder,
                                        Base::OrderedOp::CompareExchangeFailureOrder);
  }
};

template<typename T, MemoryOrdering Order>
struct IntrinsicAddSub : public IntrinsicBase<T, Order>
{
  typedef IntrinsicBase<T, Order> Base;

  static T add(typename Base::ValueType& aPtr, T aVal)
  {
    return aPtr.fetch_add(aVal, Base::OrderedOp::AtomicRMWOrder);
  }

  static T sub(typename Base::ValueType& aPtr, T aVal)
  {
    return aPtr.fetch_sub(aVal, Base::OrderedOp::AtomicRMWOrder);
  }
};

template<typename T, MemoryOrdering Order>
struct IntrinsicAddSub<T*, Order> : public IntrinsicBase<T*, Order>
{
  typedef IntrinsicBase<T*, Order> Base;

  static T* add(typename Base::ValueType& aPtr, ptrdiff_t aVal)
  {
    return aPtr.fetch_add(fixupAddend(aVal), Base::OrderedOp::AtomicRMWOrder);
  }

  static T* sub(typename Base::ValueType& aPtr, ptrdiff_t aVal)
  {
    return aPtr.fetch_sub(fixupAddend(aVal), Base::OrderedOp::AtomicRMWOrder);
  }
private:
  /*
   * GCC 4.6's <atomic> header has a bug where adding X to an
   * atomic<T*> is not the same as adding X to a T*.  Hence the need
   * for this function to provide the correct addend.
   */
  static ptrdiff_t fixupAddend(ptrdiff_t aVal)
  {
#if defined(__clang__) || defined(_MSC_VER)
    return aVal;
#elif defined(__GNUC__) && !MOZ_GCC_VERSION_AT_LEAST(4, 7, 0)
    return aVal * sizeof(T);
#else
    return aVal;
#endif
  }
};

template<typename T, MemoryOrdering Order>
struct IntrinsicIncDec : public IntrinsicAddSub<T, Order>
{
  typedef IntrinsicBase<T, Order> Base;

  static T inc(typename Base::ValueType& aPtr)
  {
    return IntrinsicAddSub<T, Order>::add(aPtr, 1);
  }

  static T dec(typename Base::ValueType& aPtr)
  {
    return IntrinsicAddSub<T, Order>::sub(aPtr, 1);
  }
};

template<typename T, MemoryOrdering Order>
struct AtomicIntrinsics : public IntrinsicMemoryOps<T, Order>,
                          public IntrinsicIncDec<T, Order>
{
  typedef IntrinsicBase<T, Order> Base;

  static T or_(typename Base::ValueType& aPtr, T aVal)
  {
    return aPtr.fetch_or(aVal, Base::OrderedOp::AtomicRMWOrder);
  }

  static T xor_(typename Base::ValueType& aPtr, T aVal)
  {
    return aPtr.fetch_xor(aVal, Base::OrderedOp::AtomicRMWOrder);
  }

  static T and_(typename Base::ValueType& aPtr, T aVal)
  {
    return aPtr.fetch_and(aVal, Base::OrderedOp::AtomicRMWOrder);
  }
};

template<typename T, MemoryOrdering Order>
struct AtomicIntrinsics<T*, Order>
  : public IntrinsicMemoryOps<T*, Order>, public IntrinsicIncDec<T*, Order>
{
};

} // namespace detail
} // namespace mozilla

#elif defined(__GNUC__)

namespace mozilla {
namespace detail {

/*
 * The __sync_* family of intrinsics is documented here:
 *
 * http://gcc.gnu.org/onlinedocs/gcc-4.6.4/gcc/Atomic-Builtins.html
 *
 * While these intrinsics are deprecated in favor of the newer __atomic_*
 * family of intrincs:
 *
 * http://gcc.gnu.org/onlinedocs/gcc-4.7.3/gcc/_005f_005fatomic-Builtins.html
 *
 * any GCC version that supports the __atomic_* intrinsics will also support
 * the <atomic> header and so will be handled above.  We provide a version of
 * atomics using the __sync_* intrinsics to support older versions of GCC.
 *
 * All __sync_* intrinsics that we use below act as full memory barriers, for
 * both compiler and hardware reordering, except for __sync_lock_test_and_set,
 * which is a only an acquire barrier.  When we call __sync_lock_test_and_set,
 * we add a barrier above it as appropriate.
 */

template<MemoryOrdering Order> struct Barrier;

/*
 * Some processors (in particular, x86) don't require quite so many calls to
 * __sync_sychronize as our specializations of Barrier produce.  If
 * performance turns out to be an issue, defining these specializations
 * on a per-processor basis would be a good first tuning step.
 */

template<>
struct Barrier<Relaxed>
{
  static void beforeLoad() {}
  static void afterLoad() {}
  static void beforeStore() {}
  static void afterStore() {}
};

template<>
struct Barrier<ReleaseAcquire>
{
  static void beforeLoad() {}
  static void afterLoad() { __sync_synchronize(); }
  static void beforeStore() { __sync_synchronize(); }
  static void afterStore() {}
};

template<>
struct Barrier<SequentiallyConsistent>
{
  static void beforeLoad() { __sync_synchronize(); }
  static void afterLoad() { __sync_synchronize(); }
  static void beforeStore() { __sync_synchronize(); }
  static void afterStore() { __sync_synchronize(); }
};

template<typename T, MemoryOrdering Order>
struct IntrinsicMemoryOps
{
  static T load(const T& aPtr)
  {
    Barrier<Order>::beforeLoad();
    T val = aPtr;
    Barrier<Order>::afterLoad();
    return val;
  }

  static void store(T& aPtr, T aVal)
  {
    Barrier<Order>::beforeStore();
    aPtr = aVal;
    Barrier<Order>::afterStore();
  }

  static T exchange(T& aPtr, T aVal)
  {
    // __sync_lock_test_and_set is only an acquire barrier; loads and stores
    // can't be moved up from after to before it, but they can be moved down
    // from before to after it.  We may want a stricter ordering, so we need
    // an explicit barrier.
    Barrier<Order>::beforeStore();
    return __sync_lock_test_and_set(&aPtr, aVal);
  }

  static bool compareExchange(T& aPtr, T aOldVal, T aNewVal)
  {
    return __sync_bool_compare_and_swap(&aPtr, aOldVal, aNewVal);
  }
};

template<typename T>
struct IntrinsicAddSub
{
  typedef T ValueType;

  static T add(T& aPtr, T aVal)
  {
    return __sync_fetch_and_add(&aPtr, aVal);
  }

  static T sub(T& aPtr, T aVal)
  {
    return __sync_fetch_and_sub(&aPtr, aVal);
  }
};

template<typename T>
struct IntrinsicAddSub<T*>
{
  typedef T* ValueType;

  /*
   * The reinterpret_casts are needed so that
   * __sync_fetch_and_{add,sub} will properly type-check.
   *
   * Also, these functions do not provide standard semantics for
   * pointer types, so we need to adjust the addend.
   */
  static ValueType add(ValueType& aPtr, ptrdiff_t aVal)
  {
    ValueType amount = reinterpret_cast<ValueType>(aVal * sizeof(T));
    return __sync_fetch_and_add(&aPtr, amount);
  }

  static ValueType sub(ValueType& aPtr, ptrdiff_t aVal)
  {
    ValueType amount = reinterpret_cast<ValueType>(aVal * sizeof(T));
    return __sync_fetch_and_sub(&aPtr, amount);
  }
};

template<typename T>
struct IntrinsicIncDec : public IntrinsicAddSub<T>
{
  static T inc(T& aPtr) { return IntrinsicAddSub<T>::add(aPtr, 1); }
  static T dec(T& aPtr) { return IntrinsicAddSub<T>::sub(aPtr, 1); }
};

template<typename T, MemoryOrdering Order>
struct AtomicIntrinsics : public IntrinsicMemoryOps<T, Order>,
                          public IntrinsicIncDec<T>
{
  static T or_( T& aPtr, T aVal) { return __sync_fetch_and_or(&aPtr, aVal); }
  static T xor_(T& aPtr, T aVal) { return __sync_fetch_and_xor(&aPtr, aVal); }
  static T and_(T& aPtr, T aVal) { return __sync_fetch_and_and(&aPtr, aVal); }
};

template<typename T, MemoryOrdering Order>
struct AtomicIntrinsics<T*, Order> : public IntrinsicMemoryOps<T*, Order>,
                                     public IntrinsicIncDec<T*>
{
};

} // namespace detail
} // namespace mozilla

#elif defined(_MSC_VER)

/*
 * Windows comes with a full complement of atomic operations.
 * Unfortunately, most of those aren't available for Windows XP (even if
 * the compiler supports intrinsics for them), which is the oldest
 * version of Windows we support.  Therefore, we only provide operations
 * on 32-bit datatypes for 32-bit Windows versions; for 64-bit Windows
 * versions, we support 64-bit datatypes as well.
 */

#  include <intrin.h>

#  pragma intrinsic(_InterlockedExchangeAdd)
#  pragma intrinsic(_InterlockedOr)
#  pragma intrinsic(_InterlockedXor)
#  pragma intrinsic(_InterlockedAnd)
#  pragma intrinsic(_InterlockedExchange)
#  pragma intrinsic(_InterlockedCompareExchange)

namespace mozilla {
namespace detail {

#  if !defined(_M_IX86) && !defined(_M_X64)
     /*
      * The implementations below are optimized for x86ish systems.  You
      * will have to modify them if you are porting to Windows on a
      * different architecture.
      */
#    error "Unknown CPU type"
#  endif

/*
 * The PrimitiveIntrinsics template should define |Type|, the datatype of size
 * DataSize upon which we operate, and the following eight functions.
 *
 * static Type add(Type* aPtr, Type aVal);
 * static Type sub(Type* aPtr, Type aVal);
 * static Type or_(Type* aPtr, Type aVal);
 * static Type xor_(Type* aPtr, Type aVal);
 * static Type and_(Type* aPtr, Type aVal);
 *
 *   These functions perform the obvious operation on the value contained in
 *   |*aPtr| combined with |aVal| and return the value previously stored in
 *   |*aPtr|.
 *
 * static void store(Type* aPtr, Type aVal);
 *
 *   This function atomically stores |aVal| into |*aPtr| and must provide a full
 *   memory fence after the store to prevent compiler and hardware instruction
 *   reordering.  It should also act as a compiler barrier to prevent reads and
 *   writes from moving to after the store.
 *
 * static Type exchange(Type* aPtr, Type aVal);
 *
 *   This function atomically stores |aVal| into |*aPtr| and returns the
 *   previous contents of |*aPtr|;
 *
 * static bool compareExchange(Type* aPtr, Type aOldVal, Type aNewVal);
 *
 *   This function atomically performs the following operation:
 *
 *     if (*aPtr == aOldVal) {
 *       *aPtr = aNewVal;
 *       return true;
 *     } else {
 *       return false;
 *     }
 *
 */
template<size_t DataSize> struct PrimitiveIntrinsics;

template<>
struct PrimitiveIntrinsics<4>
{
  typedef long Type;

  static Type add(Type* aPtr, Type aVal)
  {
    return _InterlockedExchangeAdd(aPtr, aVal);
  }

  static Type sub(Type* aPtr, Type aVal)
  {
    /*
     * _InterlockedExchangeSubtract isn't available before Windows 7,
     * and we must support Windows XP.
     */
    return _InterlockedExchangeAdd(aPtr, -aVal);
  }

  static Type or_(Type* aPtr, Type aVal)
  {
    return _InterlockedOr(aPtr, aVal);
  }

  static Type xor_(Type* aPtr, Type aVal)
  {
    return _InterlockedXor(aPtr, aVal);
  }

  static Type and_(Type* aPtr, Type aVal)
  {
    return _InterlockedAnd(aPtr, aVal);
  }

  static void store(Type* aPtr, Type aVal)
  {
    _InterlockedExchange(aPtr, aVal);
  }

  static Type exchange(Type* aPtr, Type aVal)
  {
    return _InterlockedExchange(aPtr, aVal);
  }

  static bool compareExchange(Type* aPtr, Type aOldVal, Type aNewVal)
  {
    return _InterlockedCompareExchange(aPtr, aNewVal, aOldVal) == aOldVal;
  }
};

#  if defined(_M_X64)

#    pragma intrinsic(_InterlockedExchangeAdd64)
#    pragma intrinsic(_InterlockedOr64)
#    pragma intrinsic(_InterlockedXor64)
#    pragma intrinsic(_InterlockedAnd64)
#    pragma intrinsic(_InterlockedExchange64)
#    pragma intrinsic(_InterlockedCompareExchange64)

template <>
struct PrimitiveIntrinsics<8>
{
  typedef __int64 Type;

  static Type add(Type* aPtr, Type aVal)
  {
    return _InterlockedExchangeAdd64(aPtr, aVal);
  }

  static Type sub(Type* aPtr, Type aVal)
  {
    /*
     * There is no _InterlockedExchangeSubtract64.
     */
    return _InterlockedExchangeAdd64(aPtr, -aVal);
  }

  static Type or_(Type* aPtr, Type aVal)
  {
    return _InterlockedOr64(aPtr, aVal);
  }

  static Type xor_(Type* aPtr, Type aVal)
  {
    return _InterlockedXor64(aPtr, aVal);
  }

  static Type and_(Type* aPtr, Type aVal)
  {
    return _InterlockedAnd64(aPtr, aVal);
  }

  static void store(Type* aPtr, Type aVal)
  {
    _InterlockedExchange64(aPtr, aVal);
  }

  static Type exchange(Type* aPtr, Type aVal)
  {
    return _InterlockedExchange64(aPtr, aVal);
  }

  static bool compareExchange(Type* aPtr, Type aOldVal, Type aNewVal)
  {
    return _InterlockedCompareExchange64(aPtr, aNewVal, aOldVal) == aOldVal;
  }
};

#  endif

#  pragma intrinsic(_ReadWriteBarrier)

template<MemoryOrdering Order> struct Barrier;

/*
 * We do not provide an afterStore method in Barrier, as Relaxed and
 * ReleaseAcquire orderings do not require one, and the required barrier
 * for SequentiallyConsistent is handled by PrimitiveIntrinsics.
 */

template<>
struct Barrier<Relaxed>
{
  static void beforeLoad() {}
  static void afterLoad() {}
  static void beforeStore() {}
};

template<>
struct Barrier<ReleaseAcquire>
{
  static void beforeLoad() {}
  static void afterLoad() { _ReadWriteBarrier(); }
  static void beforeStore() { _ReadWriteBarrier(); }
};

template<>
struct Barrier<SequentiallyConsistent>
{
  static void beforeLoad() { _ReadWriteBarrier(); }
  static void afterLoad() { _ReadWriteBarrier(); }
  static void beforeStore() { _ReadWriteBarrier(); }
};

template<typename PrimType, typename T>
struct CastHelper
{
  static PrimType toPrimType(T aVal) { return static_cast<PrimType>(aVal); }
  static T fromPrimType(PrimType aVal) { return static_cast<T>(aVal); }
};

template<typename PrimType, typename T>
struct CastHelper<PrimType, T*>
{
  static PrimType toPrimType(T* aVal) { return reinterpret_cast<PrimType>(aVal); }
  static T* fromPrimType(PrimType aVal) { return reinterpret_cast<T*>(aVal); }
};

template<typename T>
struct IntrinsicBase
{
  typedef T ValueType;
  typedef PrimitiveIntrinsics<sizeof(T)> Primitives;
  typedef typename Primitives::Type PrimType;
  static_assert(sizeof(PrimType) == sizeof(T),
                "Selection of PrimitiveIntrinsics was wrong");
  typedef CastHelper<PrimType, T> Cast;
};

template<typename T, MemoryOrdering Order>
struct IntrinsicMemoryOps : public IntrinsicBase<T>
{
  typedef typename IntrinsicBase<T>::ValueType ValueType;
  typedef typename IntrinsicBase<T>::Primitives Primitives;
  typedef typename IntrinsicBase<T>::PrimType PrimType;
  typedef typename IntrinsicBase<T>::Cast Cast;

  static ValueType load(const ValueType& aPtr)
  {
    Barrier<Order>::beforeLoad();
    ValueType val = aPtr;
    Barrier<Order>::afterLoad();
    return val;
  }

  static void store(ValueType& aPtr, ValueType aVal)
  {
    // For SequentiallyConsistent, Primitives::store() will generate the
    // proper memory fence.  Everything else just needs a barrier before
    // the store.
    if (Order == SequentiallyConsistent) {
      Primitives::store(reinterpret_cast<PrimType*>(&aPtr),
                        Cast::toPrimType(aVal));
    } else {
      Barrier<Order>::beforeStore();
      aPtr = aVal;
    }
  }

  static ValueType exchange(ValueType& aPtr, ValueType aVal)
  {
    PrimType oldval =
      Primitives::exchange(reinterpret_cast<PrimType*>(&aPtr),
                           Cast::toPrimType(aVal));
    return Cast::fromPrimType(oldval);
  }

  static bool compareExchange(ValueType& aPtr, ValueType aOldVal,
                              ValueType aNewVal)
  {
    return Primitives::compareExchange(reinterpret_cast<PrimType*>(&aPtr),
                                       Cast::toPrimType(aOldVal),
                                       Cast::toPrimType(aNewVal));
  }
};

template<typename T>
struct IntrinsicApplyHelper : public IntrinsicBase<T>
{
  typedef typename IntrinsicBase<T>::ValueType ValueType;
  typedef typename IntrinsicBase<T>::PrimType PrimType;
  typedef typename IntrinsicBase<T>::Cast Cast;
  typedef PrimType (*BinaryOp)(PrimType*, PrimType);
  typedef PrimType (*UnaryOp)(PrimType*);

  static ValueType applyBinaryFunction(BinaryOp aOp, ValueType& aPtr,
                                       ValueType aVal)
  {
    PrimType* primTypePtr = reinterpret_cast<PrimType*>(&aPtr);
    PrimType primTypeVal = Cast::toPrimType(aVal);
    return Cast::fromPrimType(aOp(primTypePtr, primTypeVal));
  }

  static ValueType applyUnaryFunction(UnaryOp aOp, ValueType& aPtr)
  {
    PrimType* primTypePtr = reinterpret_cast<PrimType*>(&aPtr);
    return Cast::fromPrimType(aOp(primTypePtr));
  }
};

template<typename T>
struct IntrinsicAddSub : public IntrinsicApplyHelper<T>
{
  typedef typename IntrinsicApplyHelper<T>::ValueType ValueType;
  typedef typename IntrinsicBase<T>::Primitives Primitives;

  static ValueType add(ValueType& aPtr, ValueType aVal)
  {
    return applyBinaryFunction(&Primitives::add, aPtr, aVal);
  }

  static ValueType sub(ValueType& aPtr, ValueType aVal)
  {
    return applyBinaryFunction(&Primitives::sub, aPtr, aVal);
  }
};

template<typename T>
struct IntrinsicAddSub<T*> : public IntrinsicApplyHelper<T*>
{
  typedef typename IntrinsicApplyHelper<T*>::ValueType ValueType;
  typedef typename IntrinsicBase<T*>::Primitives Primitives;

  static ValueType add(ValueType& aPtr, ptrdiff_t aAmount)
  {
    return applyBinaryFunction(&Primitives::add, aPtr,
                               (ValueType)(aAmount * sizeof(T)));
  }

  static ValueType sub(ValueType& aPtr, ptrdiff_t aAmount)
  {
    return applyBinaryFunction(&Primitives::sub, aPtr,
                               (ValueType)(aAmount * sizeof(T)));
  }
};

template<typename T>
struct IntrinsicIncDec : public IntrinsicAddSub<T>
{
  typedef typename IntrinsicAddSub<T>::ValueType ValueType;
  static ValueType inc(ValueType& aPtr) { return add(aPtr, 1); }
  static ValueType dec(ValueType& aPtr) { return sub(aPtr, 1); }
};

template<typename T, MemoryOrdering Order>
struct AtomicIntrinsics : public IntrinsicMemoryOps<T, Order>,
                          public IntrinsicIncDec<T>
{
  typedef typename IntrinsicIncDec<T>::ValueType ValueType;
  typedef typename IntrinsicBase<T>::Primitives Primitives;

  static ValueType or_(ValueType& aPtr, T aVal)
  {
    return applyBinaryFunction(&Primitives::or_, aPtr, aVal);
  }

  static ValueType xor_(ValueType& aPtr, T aVal)
  {
    return applyBinaryFunction(&Primitives::xor_, aPtr, aVal);
  }

  static ValueType and_(ValueType& aPtr, T aVal)
  {
    return applyBinaryFunction(&Primitives::and_, aPtr, aVal);
  }
};

template<typename T, MemoryOrdering Order>
struct AtomicIntrinsics<T*, Order> : public IntrinsicMemoryOps<T*, Order>,
                                     public IntrinsicIncDec<T*>
{
  typedef typename IntrinsicMemoryOps<T*, Order>::ValueType ValueType;
  // This is required to make us be able to build with MSVC10, for unknown
  // reasons.
  typedef typename IntrinsicBase<T*>::Primitives Primitives;
};

} // namespace detail
} // namespace mozilla

#else
# error "Atomic compiler intrinsics are not supported on your platform"
#endif

namespace mozilla {

namespace detail {

template<typename T, MemoryOrdering Order>
class AtomicBase
{
  // We only support 32-bit types on 32-bit Windows, which constrains our
  // implementation elsewhere.  But we support pointer-sized types everywhere.
  static_assert(sizeof(T) == 4 || (sizeof(uintptr_t) == 8 && sizeof(T) == 8),
                "mozilla/Atomics.h only supports 32-bit and pointer-sized types");

protected:
  typedef typename detail::AtomicIntrinsics<T, Order> Intrinsics;
  typename Intrinsics::ValueType mValue;

public:
  MOZ_CONSTEXPR AtomicBase() : mValue() {}
  explicit MOZ_CONSTEXPR AtomicBase(T aInit) : mValue(aInit) {}

  // Note: we can't provide operator T() here because Atomic<bool> inherits
  // from AtomcBase with T=uint32_t and not T=bool. If we implemented
  // operator T() here, it would cause errors when comparing Atomic<bool> with
  // a regular bool.

  T operator=(T aVal)
  {
    Intrinsics::store(mValue, aVal);
    return aVal;
  }

  /**
   * Performs an atomic swap operation.  aVal is stored and the previous
   * value of this variable is returned.
   */
  T exchange(T aVal)
  {
    return Intrinsics::exchange(mValue, aVal);
  }

  /**
   * Performs an atomic compare-and-swap operation and returns true if it
   * succeeded. This is equivalent to atomically doing
   *
   *   if (mValue == aOldValue) {
   *     mValue = aNewValue;
   *     return true;
   *   } else {
   *     return false;
   *   }
   */
  bool compareExchange(T aOldValue, T aNewValue)
  {
    return Intrinsics::compareExchange(mValue, aOldValue, aNewValue);
  }

private:
  template<MemoryOrdering AnyOrder>
  AtomicBase(const AtomicBase<T, AnyOrder>& aCopy) = delete;
};

template<typename T, MemoryOrdering Order>
class AtomicBaseIncDec : public AtomicBase<T, Order>
{
  typedef typename detail::AtomicBase<T, Order> Base;

public:
  MOZ_CONSTEXPR AtomicBaseIncDec() : Base() {}
  explicit MOZ_CONSTEXPR AtomicBaseIncDec(T aInit) : Base(aInit) {}

  using Base::operator=;

  operator T() const { return Base::Intrinsics::load(Base::mValue); }
  T operator++(int) { return Base::Intrinsics::inc(Base::mValue); }
  T operator--(int) { return Base::Intrinsics::dec(Base::mValue); }
  T operator++() { return Base::Intrinsics::inc(Base::mValue) + 1; }
  T operator--() { return Base::Intrinsics::dec(Base::mValue) - 1; }

private:
  template<MemoryOrdering AnyOrder>
  AtomicBaseIncDec(const AtomicBaseIncDec<T, AnyOrder>& aCopy) = delete;
};

} // namespace detail

/**
 * A wrapper for a type that enforces that all memory accesses are atomic.
 *
 * In general, where a variable |T foo| exists, |Atomic<T> foo| can be used in
 * its place.  Implementations for integral and pointer types are provided
 * below.
 *
 * Atomic accesses are sequentially consistent by default.  You should
 * use the default unless you are tall enough to ride the
 * memory-ordering roller coaster (if you're not sure, you aren't) and
 * you have a compelling reason to do otherwise.
 *
 * There is one exception to the case of atomic memory accesses: providing an
 * initial value of the atomic value is not guaranteed to be atomic.  This is a
 * deliberate design choice that enables static atomic variables to be declared
 * without introducing extra static constructors.
 */
template<typename T,
         MemoryOrdering Order = SequentiallyConsistent,
         typename Enable = void>
class Atomic;

/**
 * Atomic<T> implementation for integral types.
 *
 * In addition to atomic store and load operations, compound assignment and
 * increment/decrement operators are implemented which perform the
 * corresponding read-modify-write operation atomically.  Finally, an atomic
 * swap method is provided.
 */
template<typename T, MemoryOrdering Order>
class Atomic<T, Order, typename EnableIf<IsIntegral<T>::value &&
                       !IsSame<T, bool>::value>::Type>
  : public detail::AtomicBaseIncDec<T, Order>
{
  typedef typename detail::AtomicBaseIncDec<T, Order> Base;

public:
  MOZ_CONSTEXPR Atomic() : Base() {}
  explicit MOZ_CONSTEXPR Atomic(T aInit) : Base(aInit) {}

  using Base::operator=;

  T operator+=(T aDelta)
  {
    return Base::Intrinsics::add(Base::mValue, aDelta) + aDelta;
  }

  T operator-=(T aDelta)
  {
    return Base::Intrinsics::sub(Base::mValue, aDelta) - aDelta;
  }

  T operator|=(T aVal)
  {
    return Base::Intrinsics::or_(Base::mValue, aVal) | aVal;
  }

  T operator^=(T aVal)
  {
    return Base::Intrinsics::xor_(Base::mValue, aVal) ^ aVal;
  }

  T operator&=(T aVal)
  {
    return Base::Intrinsics::and_(Base::mValue, aVal) & aVal;
  }

private:
  Atomic(Atomic<T, Order>& aOther) = delete;
};

/**
 * Atomic<T> implementation for pointer types.
 *
 * An atomic compare-and-swap primitive for pointer variables is provided, as
 * are atomic increment and decement operators.  Also provided are the compound
 * assignment operators for addition and subtraction. Atomic swap (via
 * exchange()) is included as well.
 */
template<typename T, MemoryOrdering Order>
class Atomic<T*, Order> : public detail::AtomicBaseIncDec<T*, Order>
{
  typedef typename detail::AtomicBaseIncDec<T*, Order> Base;

public:
  MOZ_CONSTEXPR Atomic() : Base() {}
  explicit MOZ_CONSTEXPR Atomic(T* aInit) : Base(aInit) {}

  using Base::operator=;

  T* operator+=(ptrdiff_t aDelta)
  {
    return Base::Intrinsics::add(Base::mValue, aDelta) + aDelta;
  }

  T* operator-=(ptrdiff_t aDelta)
  {
    return Base::Intrinsics::sub(Base::mValue, aDelta) - aDelta;
  }

private:
  Atomic(Atomic<T*, Order>& aOther) = delete;
};

/**
 * Atomic<T> implementation for enum types.
 *
 * The atomic store and load operations and the atomic swap method is provided.
 */
template<typename T, MemoryOrdering Order>
class Atomic<T, Order, typename EnableIf<IsEnum<T>::value>::Type>
  : public detail::AtomicBase<T, Order>
{
  typedef typename detail::AtomicBase<T, Order> Base;

public:
  MOZ_CONSTEXPR Atomic() : Base() {}
  explicit MOZ_CONSTEXPR Atomic(T aInit) : Base(aInit) {}

  operator T() const { return Base::Intrinsics::load(Base::mValue); }

  using Base::operator=;

private:
  Atomic(Atomic<T, Order>& aOther) = delete;
};

/**
 * Atomic<T> implementation for boolean types.
 *
 * The atomic store and load operations and the atomic swap method is provided.
 *
 * Note:
 *
 * - sizeof(Atomic<bool>) != sizeof(bool) for some implementations of
 *   bool and/or some implementations of std::atomic. This is allowed in
 *   [atomic.types.generic]p9.
 *
 * - It's not obvious whether the 8-bit atomic functions on Windows are always
 *   inlined or not. If they are not inlined, the corresponding functions in the
 *   runtime library are not available on Windows XP. This is why we implement
 *   Atomic<bool> with an underlying type of uint32_t.
 */
template<MemoryOrdering Order>
class Atomic<bool, Order>
  : protected detail::AtomicBase<uint32_t, Order>
{
  typedef typename detail::AtomicBase<uint32_t, Order> Base;

public:
  MOZ_CONSTEXPR Atomic() : Base() {}
  explicit MOZ_CONSTEXPR Atomic(bool aInit) : Base(aInit) {}

  // We provide boolean wrappers for the underlying AtomicBase methods.
  operator bool() const
  {
    return Base::Intrinsics::load(Base::mValue);
  }

  bool operator=(bool aVal)
  {
    return Base::operator=(aVal);
  }

  bool exchange(bool aVal)
  {
    return Base::exchange(aVal);
  }

  bool compareExchange(bool aOldValue, bool aNewValue)
  {
    return Base::compareExchange(aOldValue, aNewValue);
  }

private:
  Atomic(Atomic<bool, Order>& aOther) = delete;
};

} // namespace mozilla

#endif /* mozilla_Atomics_h */