This file is indexed.

/usr/include/mozjs-38/js/UbiNode.h is in libmozjs-38-dev 38.8.0~repack1-0ubuntu4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * vim: set ts=8 sts=4 et sw=4 tw=99:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef js_UbiNode_h
#define js_UbiNode_h

#include "mozilla/Alignment.h"
#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/Maybe.h"
#include "mozilla/MemoryReporting.h"
#include "mozilla/Move.h"

#include "jspubtd.h"

#include "js/GCAPI.h"
#include "js/HashTable.h"
#include "js/TracingAPI.h"
#include "js/TypeDecls.h"
#include "js/Vector.h"

// JS::ubi::Node
//
// JS::ubi::Node is a pointer-like type designed for internal use by heap
// analysis tools. A ubi::Node can refer to:
//
// - a JS value, like a string, object, or symbol;
// - an internal SpiderMonkey structure, like a shape or a scope chain object
// - an instance of some embedding-provided type: in Firefox, an XPCOM
//   object, or an internal DOM node class instance
//
// A ubi::Node instance provides metadata about its referent, and can
// enumerate its referent's outgoing edges, so you can implement heap analysis
// algorithms that walk the graph - finding paths between objects, or
// computing heap dominator trees, say - using ubi::Node, while remaining
// ignorant of the details of the types you're operating on.
//
// Of course, when it comes to presenting the results in a developer-facing
// tool, you'll need to stop being ignorant of those details, because you have
// to discuss the ubi::Nodes' referents with the developer. Here, ubi::Node
// can hand you dynamically checked, properly typed pointers to the original
// objects via the as<T> method, or generate descriptions of the referent
// itself.
//
// ubi::Node instances are lightweight (two-word) value types. Instances:
// - compare equal if and only if they refer to the same object;
// - have hash values that respect their equality relation; and
// - have serializations that are only equal if the ubi::Nodes are equal.
//
// A ubi::Node is only valid for as long as its referent is alive; if its
// referent goes away, the ubi::Node becomes a dangling pointer. A ubi::Node
// that refers to a GC-managed object is not automatically a GC root; if the
// GC frees or relocates its referent, the ubi::Node becomes invalid. A
// ubi::Node that refers to a reference-counted object does not bump the
// reference count.
//
// ubi::Node values require no supporting data structures, making them
// feasible for use in memory-constrained devices --- ideally, the memory
// requirements of the algorithm which uses them will be the limiting factor,
// not the demands of ubi::Node itself.
//
// One can construct a ubi::Node value given a pointer to a type that ubi::Node
// supports. In the other direction, one can convert a ubi::Node back to a
// pointer; these downcasts are checked dynamically. In particular, one can
// convert a 'JSRuntime*' to a ubi::Node, yielding a node with an outgoing edge
// for every root registered with the runtime; starting from this, one can walk
// the entire heap. (Of course, one could also start traversal at any other kind
// of type to which one has a pointer.)
//
//
// Extending ubi::Node To Handle Your Embedding's Types
//
// To add support for a new ubi::Node referent type R, you must define a
// specialization of the ubi::Concrete template, ubi::Concrete<R>, which
// inherits from ubi::Base. ubi::Node itself uses the specialization for
// compile-time information (i.e. the checked conversions between R * and
// ubi::Node), and the inheritance for run-time dispatching.
//
//
// ubi::Node Exposes Implementation Details
//
// In many cases, a JavaScript developer's view of their data differs
// substantially from its actual implementation. For example, while the
// ECMAScript specification describes objects as maps from property names to
// sets of attributes (like ECMAScript's [[Value]]), in practice many objects
// have only a pointer to a shape, shared with other similar objects, and
// indexed slots that contain the [[Value]] attributes. As another example, a
// string produced by concatenating two other strings may sometimes be
// represented by a "rope", a structure that points to the two original
// strings.
//

// We intend to use ubi::Node to write tools that report memory usage, so it's
// important that ubi::Node accurately portray how much memory nodes consume.
// Thus, for example, when data that apparently belongs to multiple nodes is
// in fact shared in a common structure, ubi::Node's graph uses a separate
// node for that shared structure, and presents edges to it from the data's
// apparent owners. For example, ubi::Node exposes SpiderMonkey objects'
// shapes and base shapes, and exposes rope string and substring structure,
// because these optimizations become visible when a tool reports how much
// memory a structure consumes.
//
// However, fine granularity is not a goal. When a particular object is the
// exclusive owner of a separate block of memory, ubi::Node may present the
// object and its block as a single node, and add their sizes together when
// reporting the node's size, as there is no meaningful loss of data in this
// case. Thus, for example, a ubi::Node referring to a JavaScript object, when
// asked for the object's size in bytes, includes the object's slot and
// element arrays' sizes in the total. There is no separate ubi::Node value
// representing the slot and element arrays, since they are owned exclusively
// by the object.
//
//
// Presenting Analysis Results To JavaScript Developers
//
// If an analysis provides its results in terms of ubi::Node values, a user
// interface presenting those results will generally need to clean them up
// before they can be understood by JavaScript developers. For example,
// JavaScript developers should not need to understand shapes, only JavaScript
// objects. Similarly, they should not need to understand the distinction
// between DOM nodes and the JavaScript shadow objects that represent them.
//
//
// Rooting Restrictions
//
// At present there is no way to root ubi::Node instances, so instances can't be
// live across any operation that might GC. Analyses using ubi::Node must either
// run to completion and convert their results to some other rootable type, or
// save their intermediate state in some rooted structure if they must GC before
// they complete. (For algorithms like path-finding and dominator tree
// computation, we implement the algorithm avoiding any operation that could
// cause a GC --- and use AutoCheckCannotGC to verify this.)
//
// If this restriction prevents us from implementing interesting tools, we may
// teach the GC how to root ubi::Nodes, fix up hash tables that use them as
// keys, etc.

namespace JS {
namespace ubi {

using mozilla::Maybe;

class Edge;
class EdgeRange;

// The base class implemented by each ubi::Node referent type. Subclasses must
// not add data members to this class.
class Base {
    friend class Node;

    // For performance's sake, we'd prefer to avoid a virtual destructor; and
    // an empty constructor seems consistent with the 'lightweight value type'
    // visible behavior we're trying to achieve. But if the destructor isn't
    // virtual, and a subclass overrides it, the subclass's destructor will be
    // ignored. Is there a way to make the compiler catch that error?

  protected:
    // Space for the actual pointer. Concrete subclasses should define a
    // properly typed 'get' member function to access this.
    void* ptr;

    explicit Base(void* ptr) : ptr(ptr) { }

  public:
    bool operator==(const Base& rhs) const {
        // Some compilers will indeed place objects of different types at
        // the same address, so technically, we should include the vtable
        // in this comparison. But it seems unlikely to cause problems in
        // practice.
        return ptr == rhs.ptr;
    }
    bool operator!=(const Base& rhs) const { return !(*this == rhs); }

    // Return a human-readable name for the referent's type. The result should
    // be statically allocated. (You can use MOZ_UTF16("strings") for this.)
    //
    // This must always return Concrete<T>::concreteTypeName; we use that
    // pointer as a tag for this particular referent type.
    virtual const char16_t* typeName() const = 0;

    // Return the size of this node, in bytes. Include any structures that this
    // node owns exclusively that are not exposed as their own ubi::Nodes.
    // |mallocSizeOf| should be a malloc block sizing function; see
    // |mfbt/MemoryReporting.h.
    virtual size_t size(mozilla::MallocSizeOf mallocSizeof) const { return 0; }

    // Return an EdgeRange that initially contains all the referent's outgoing
    // edges. The EdgeRange should be freed with 'js_delete'. (You could use
    // ScopedDJSeletePtr<EdgeRange> to manage it.) On OOM, report an exception
    // on |cx| and return nullptr.
    //
    // If wantNames is true, compute names for edges. Doing so can be expensive
    // in time and memory.
    virtual EdgeRange* edges(JSContext* cx, bool wantNames) const = 0;

    // Return the Zone to which this node's referent belongs, or nullptr if the
    // referent is not of a type allocated in SpiderMonkey Zones.
    virtual JS::Zone* zone() const { return nullptr; }

    // Return the compartment for this node. Some ubi::Node referents are not
    // associated with JSCompartments, such as JSStrings (which are associated
    // with Zones). When the referent is not associated with a compartment,
    // nullptr is returned.
    virtual JSCompartment* compartment() const { return nullptr; }

  private:
    Base(const Base& rhs) = delete;
    Base& operator=(const Base& rhs) = delete;
};

// A traits template with a specialization for each referent type that
// ubi::Node supports. The specialization must be the concrete subclass of
// Base that represents a pointer to the referent type. It must also
// include the members described here.
template<typename Referent>
struct Concrete {
    // The specific char16_t array returned by Concrete<T>::typeName.
    static const char16_t concreteTypeName[];

    // Construct an instance of this concrete class in |storage| referring
    // to |referent|. Implementations typically use a placement 'new'.
    //
    // In some cases, |referent| will contain dynamic type information that
    // identifies it a some more specific subclass of |Referent|. For example,
    // when |Referent| is |JSObject|, then |referent->getClass()| could tell us
    // that it's actually a JSFunction. Similarly, if |Referent| is
    // |nsISupports|, we would like a ubi::Node that knows its final
    // implementation type.
    //
    // So, we delegate the actual construction to this specialization, which
    // knows Referent's details.
    static void construct(void* storage, Referent* referent);
};

// A container for a Base instance; all members simply forward to the contained instance.
// This container allows us to pass ubi::Node instances by value.
class Node {
    // Storage in which we allocate Base subclasses.
    mozilla::AlignedStorage2<Base> storage;
    Base* base() { return storage.addr(); }
    const Base* base() const { return storage.addr(); }

    template<typename T>
    void construct(T* ptr) {
        static_assert(sizeof(Concrete<T>) == sizeof(*base()),
                      "ubi::Base specializations must be the same size as ubi::Base");
        Concrete<T>::construct(base(), ptr);
    }

  public:
    Node() { construct<void>(nullptr); }

    template<typename T>
    Node(T* ptr) {
        construct(ptr);
    }
    template<typename T>
    Node& operator=(T* ptr) {
        construct(ptr);
        return *this;
    }

    // We can construct and assign from rooted forms of pointers.
    template<typename T>
    Node(const Rooted<T*>& root) {
        construct(root.get());
    }
    template<typename T>
    Node& operator=(const Rooted<T*>& root) {
        construct(root.get());
        return *this;
    }

    // Constructors accepting SpiderMonkey's other generic-pointer-ish types.
    // Note that we *do* want an implicit constructor here: JS::Value and
    // JS::ubi::Node are both essentially tagged references to other sorts of
    // objects, so letting conversions happen automatically is appropriate.
    MOZ_IMPLICIT Node(JS::HandleValue value);
    Node(JSGCTraceKind kind, void* ptr);

    // copy construction and copy assignment just use memcpy, since we know
    // instances contain nothing but a vtable pointer and a data pointer.
    //
    // To be completely correct, concrete classes could provide a virtual
    // 'construct' member function, which we could invoke on rhs to construct an
    // instance in our storage. But this is good enough; there's no need to jump
    // through vtables for copying and assignment that are just going to move
    // two words around. The compiler knows how to optimize memcpy.
    Node(const Node& rhs) {
        memcpy(storage.u.mBytes, rhs.storage.u.mBytes, sizeof(storage.u));
    }

    Node& operator=(const Node& rhs) {
        memcpy(storage.u.mBytes, rhs.storage.u.mBytes, sizeof(storage.u));
        return *this;
    }

    bool operator==(const Node& rhs) const { return *base() == *rhs.base(); }
    bool operator!=(const Node& rhs) const { return *base() != *rhs.base(); }

    explicit operator bool() const {
        return base()->ptr != nullptr;
    }

    template<typename T>
    bool is() const {
        return base()->typeName() == Concrete<T>::concreteTypeName;
    }

    template<typename T>
    T* as() const {
        MOZ_ASSERT(is<T>());
        return static_cast<T*>(base()->ptr);
    }

    template<typename T>
    T* asOrNull() const {
        return is<T>() ? static_cast<T*>(base()->ptr) : nullptr;
    }

    // If this node refers to something that can be represented as a JavaScript
    // value that is safe to expose to JavaScript code, return that value.
    // Otherwise return UndefinedValue(). JSStrings, JS::Symbols, and some (but
    // not all!) JSObjects can be exposed.
    JS::Value exposeToJS() const;

    const char16_t* typeName()      const { return base()->typeName(); }
    JS::Zone* zone()                const { return base()->zone(); }
    JSCompartment* compartment()    const { return base()->compartment(); }

    size_t size(mozilla::MallocSizeOf mallocSizeof) const {
        return base()->size(mallocSizeof);
    }

    EdgeRange* edges(JSContext* cx, bool wantNames = true) const {
        return base()->edges(cx, wantNames);
    }

    // A hash policy for ubi::Nodes.
    // This simply uses the stock PointerHasher on the ubi::Node's pointer.
    // We specialize DefaultHasher below to make this the default.
    class HashPolicy {
        typedef js::PointerHasher<void*, mozilla::tl::FloorLog2<sizeof(void*)>::value> PtrHash;

      public:
        typedef Node Lookup;

        static js::HashNumber hash(const Lookup& l) { return PtrHash::hash(l.base()->ptr); }
        static bool match(const Node& k, const Lookup& l) { return k == l; }
        static void rekey(Node& k, const Node& newKey) { k = newKey; }
    };
};


// Edge is the abstract base class representing an outgoing edge of a node.
// Edges are owned by EdgeRanges, and need not have assignment operators or copy
// constructors.
//
// Each Edge class should inherit from this base class, overriding as
// appropriate.
class Edge {
  protected:
    Edge() : name(nullptr), referent() { }
    virtual ~Edge() { }

  public:
    // This edge's name. This may be nullptr, if Node::edges was called with
    // false as the wantNames parameter.
    //
    // The storage is owned by this Edge, and will be freed when this Edge is
    // destructed.
    //
    // (In real life we'll want a better representation for names, to avoid
    // creating tons of strings when the names follow a pattern; and we'll need
    // to think about lifetimes carefully to ensure traversal stays cheap.)
    const char16_t* name;

    // This edge's referent.
    Node referent;

  private:
    Edge(const Edge&) = delete;
    Edge& operator=(const Edge&) = delete;
};


// EdgeRange is an abstract base class for iterating over a node's outgoing
// edges. (This is modeled after js::HashTable<K,V>::Range.)
//
// Concrete instances of this class need not be as lightweight as Node itself,
// since they're usually only instantiated while iterating over a particular
// object's edges. For example, a dumb implementation for JS Cells might use
// JS_TraceChildren to to get the outgoing edges, and then store them in an
// array internal to the EdgeRange.
class EdgeRange {
  protected:
    // The current front edge of this range, or nullptr if this range is empty.
    Edge* front_;

    EdgeRange() : front_(nullptr) { }

  public:
    virtual ~EdgeRange() { }

    // True if there are no more edges in this range.
    bool empty() const { return !front_; }

    // The front edge of this range. This is owned by the EdgeRange, and is
    // only guaranteed to live until the next call to popFront, or until
    // the EdgeRange is destructed.
    const Edge& front() { return *front_; }

    // Remove the front edge from this range. This should only be called if
    // !empty().
    virtual void popFront() = 0;

  private:
    EdgeRange(const EdgeRange&) = delete;
    EdgeRange& operator=(const EdgeRange&) = delete;
};


// A dumb Edge concrete class. All but the most essential members have the
// default behavior.
class SimpleEdge : public Edge {
    SimpleEdge(SimpleEdge&) = delete;
    SimpleEdge& operator=(const SimpleEdge&) = delete;

  public:
    SimpleEdge() : Edge() { }

    // Construct an initialized SimpleEdge, taking ownership of |name|.
    SimpleEdge(char16_t* name, const Node& referent) {
        this->name = name;
        this->referent = referent;
    }
    ~SimpleEdge() {
        js_free(const_cast<char16_t*>(name));
    }

    // Move construction and assignment.
    SimpleEdge(SimpleEdge&& rhs) {
        name = rhs.name;
        referent = rhs.referent;

        rhs.name = nullptr;
    }
    SimpleEdge& operator=(SimpleEdge&& rhs) {
        MOZ_ASSERT(&rhs != this);
        this->~SimpleEdge();
        new(this) SimpleEdge(mozilla::Move(rhs));
        return *this;
    }
};

typedef mozilla::Vector<SimpleEdge, 8, js::TempAllocPolicy> SimpleEdgeVector;


// RootList is a class that can be pointed to by a |ubi::Node|, creating a
// fictional root-of-roots which has edges to every GC root in the JS
// runtime. Having a single root |ubi::Node| is useful for algorithms written
// with the assumption that there aren't multiple roots (such as computing
// dominator trees) and you want a single point of entry. It also ensures that
// the roots themselves get visited by |ubi::BreadthFirst| (they would otherwise
// only be used as starting points).
//
// RootList::init itself causes a minor collection, but once the list of roots
// has been created, GC must not occur, as the referent ubi::Nodes are not
// stable across GC. The init calls emplace on |noGC|'s AutoCheckCannotGC, whose
// lifetime must extend at least as long as the RootList itself.
//
// Example usage:
//
//    {
//        mozilla::Maybe<JS::AutoCheckCannotGC> maybeNoGC;
//        JS::ubi::RootList rootList(cx, maybeNoGC);
//        if (!rootList.init())
//            return false;
//
//        // The AutoCheckCannotGC is guaranteed to exist if init returned true.
//        MOZ_ASSERT(maybeNoGC.isSome());
//
//        JS::ubi::Node root(&rootList);
//
//        ...
//    }
class MOZ_STACK_CLASS RootList {
    Maybe<AutoCheckCannotGC>& noGC;
    JSContext*               cx;

  public:
    SimpleEdgeVector edges;
    bool             wantNames;

    RootList(JSContext* cx, Maybe<AutoCheckCannotGC>& noGC, bool wantNames = false);

    // Find all GC roots.
    bool init();
    // Find only GC roots in the provided set of |Zone|s.
    bool init(ZoneSet& debuggees);
    // Find only GC roots in the given Debugger object's set of debuggee zones.
    bool init(HandleObject debuggees);

    // Explicitly add the given Node as a root in this RootList. If wantNames is
    // true, you must pass an edgeName. The RootList does not take ownership of
    // edgeName.
    bool addRoot(Node node, const char16_t* edgeName = nullptr);
};


// Concrete classes for ubi::Node referent types.

template<>
struct Concrete<RootList> : public Base {
    EdgeRange* edges(JSContext* cx, bool wantNames) const override;
    const char16_t* typeName() const override { return concreteTypeName; }

  protected:
    explicit Concrete(RootList* ptr) : Base(ptr) { }
    RootList& get() const { return *static_cast<RootList*>(ptr); }

  public:
    static const char16_t concreteTypeName[];
    static void construct(void* storage, RootList* ptr) { new (storage) Concrete(ptr); }
};

// A reusable ubi::Concrete specialization base class for types supported by
// JS_TraceChildren.
template<typename Referent>
class TracerConcrete : public Base {
    const char16_t* typeName() const override { return concreteTypeName; }
    EdgeRange* edges(JSContext*, bool wantNames) const override;
    JS::Zone* zone() const override;

  protected:
    explicit TracerConcrete(Referent* ptr) : Base(ptr) { }
    Referent& get() const { return *static_cast<Referent*>(ptr); }

  public:
    static const char16_t concreteTypeName[];
    static void construct(void* storage, Referent* ptr) { new (storage) TracerConcrete(ptr); }
};

// For JS_TraceChildren-based types that have a 'compartment' method.
template<typename Referent>
class TracerConcreteWithCompartment : public TracerConcrete<Referent> {
    typedef TracerConcrete<Referent> TracerBase;
    JSCompartment* compartment() const override;

    explicit TracerConcreteWithCompartment(Referent* ptr) : TracerBase(ptr) { }

  public:
    static void construct(void* storage, Referent* ptr) {
        new (storage) TracerConcreteWithCompartment(ptr);
    }
};

// Define specializations for some commonly-used public JSAPI types.
template<> struct Concrete<JSObject> : TracerConcreteWithCompartment<JSObject> { };
template<> struct Concrete<JSString> : TracerConcrete<JSString> { };
template<> struct Concrete<JS::Symbol> : TracerConcrete<JS::Symbol> { };
template<> struct Concrete<JSScript> : TracerConcreteWithCompartment<JSScript> { };

// The ubi::Node null pointer. Any attempt to operate on a null ubi::Node asserts.
template<>
class Concrete<void> : public Base {
    const char16_t* typeName() const override;
    size_t size(mozilla::MallocSizeOf mallocSizeOf) const override;
    EdgeRange* edges(JSContext* cx, bool wantNames) const override;
    JS::Zone* zone() const override;
    JSCompartment* compartment() const override;

    explicit Concrete(void* ptr) : Base(ptr) { }

  public:
    static void construct(void* storage, void* ptr) { new (storage) Concrete(ptr); }
    static const char16_t concreteTypeName[];
};


} // namespace ubi
} // namespace JS

namespace js {

// Make ubi::Node::HashPolicy the default hash policy for ubi::Node.
template<> struct DefaultHasher<JS::ubi::Node> : JS::ubi::Node::HashPolicy { };

} // namespace js

#endif // js_UbiNode_h