/usr/include/mlpack/methods/adaboost/adaboost.hpp is in libmlpack-dev 2.2.5-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 | /**
* @file adaboost.hpp
* @author Udit Saxena
*
* The AdaBoost class. AdaBoost is a boosting algorithm, meaning that it
* combines an ensemble of weak learners to produce a strong learner. For more
* information on AdaBoost, see the following paper:
*
* @code
* @article{schapire1999improved,
* author = {Schapire, Robert E. and Singer, Yoram},
* title = {Improved Boosting Algorithms Using Confidence-rated Predictions},
* journal = {Machine Learning},
* volume = {37},
* number = {3},
* month = dec,
* year = {1999},
* issn = {0885-6125},
* pages = {297--336},
* }
* @endcode
*
* mlpack is free software; you may redistribute it and/or modify it under the
* terms of the 3-clause BSD license. You should have received a copy of the
* 3-clause BSD license along with mlpack. If not, see
* http://www.opensource.org/licenses/BSD-3-Clause for more information.
*/
#ifndef MLPACK_METHODS_ADABOOST_ADABOOST_HPP
#define MLPACK_METHODS_ADABOOST_ADABOOST_HPP
#include <mlpack/prereqs.hpp>
#include <mlpack/methods/perceptron/perceptron.hpp>
#include <mlpack/methods/decision_stump/decision_stump.hpp>
namespace mlpack {
namespace adaboost {
/**
* The AdaBoost class. AdaBoost is a boosting algorithm, meaning that it
* combines an ensemble of weak learners to produce a strong learner. For more
* information on AdaBoost, see the following paper:
*
* @code
* @article{schapire1999improved,
* author = {Schapire, Robert E. and Singer, Yoram},
* title = {Improved Boosting Algorithms Using Confidence-rated Predictions},
* journal = {Machine Learning},
* volume = {37},
* number = {3},
* month = dec,
* year = {1999},
* issn = {0885-6125},
* pages = {297--336},
* }
* @endcode
*
* This class is general, and can be used with any type of weak learner, so long
* as the learner implements the following functions:
*
* @code
* // A boosting constructor, which learns using the training parameters of the
* // given other WeakLearner, but uses the given instance weights for training.
* WeakLearner(WeakLearner& other,
* const MatType& data,
* const arma::Row<size_t>& labels,
* const arma::rowvec& weights);
*
* // Given the test points, classify them and output predictions into
* // predictedLabels.
* void Classify(const MatType& data, arma::Row<size_t>& predictedLabels);
* @endcode
*
* For more information on and examples of weak learners, see
* perceptron::Perceptron<> and decision_stump::DecisionStump<>.
*
* @tparam MatType Data matrix type (i.e. arma::mat or arma::sp_mat).
* @tparam WeakLearnerType Type of weak learner to use.
*/
template<typename WeakLearnerType = mlpack::perceptron::Perceptron<>,
typename MatType = arma::mat>
class AdaBoost
{
public:
/**
* Constructor. This runs the AdaBoost.MH algorithm to provide a trained
* boosting model. This constructor takes an already-initialized weak
* learner; all other weak learners will learn with the same parameters as the
* given weak learner.
*
* @param data Input data.
* @param labels Corresponding labels.
* @param iterations Number of boosting rounds.
* @param tol The tolerance for change in values of rt.
* @param other Weak learner that has already been initialized.
*/
AdaBoost(const MatType& data,
const arma::Row<size_t>& labels,
const WeakLearnerType& other,
const size_t iterations = 100,
const double tolerance = 1e-6);
/**
* Create the AdaBoost object without training. Be sure to call Train()
* before calling Classify()!
*/
AdaBoost(const double tolerance = 1e-6);
// Return the value of ztProduct.
double ZtProduct() { return ztProduct; }
//! Get the tolerance for stopping the optimization during training.
double Tolerance() const { return tolerance; }
//! Modify the tolerance for stopping the optimization during training.
double& Tolerance() { return tolerance; }
//! Get the number of classes this model is trained on.
size_t Classes() const { return classes; }
//! Get the number of weak learners in the model.
size_t WeakLearners() const { return alpha.size(); }
//! Get the weights for the given weak learner.
double Alpha(const size_t i) const { return alpha[i]; }
//! Modify the weight for the given weak learner (be careful!).
double& Alpha(const size_t i) { return alpha[i]; }
//! Get the given weak learner.
const WeakLearnerType& WeakLearner(const size_t i) const { return wl[i]; }
//! Modify the given weak learner (be careful!).
WeakLearnerType& WeakLearner(const size_t i) { return wl[i]; }
/**
* Train AdaBoost on the given dataset. This method takes an initialized
* WeakLearnerType; the parameters for this weak learner will be used to train
* each of the weak learners during AdaBoost training. Note that this will
* completely overwrite any model that has already been trained with this
* object.
*
* @param data Dataset to train on.
* @param labels Labels for each point in the dataset.
* @param learner Learner to use for training.
*/
void Train(const MatType& data,
const arma::Row<size_t>& labels,
const WeakLearnerType& learner,
const size_t iterations = 100,
const double tolerance = 1e-6);
/**
* Classify the given test points.
*
* @param test Testing data.
* @param predictedLabels Vector in which to the predicted labels of the test
* set will be stored.
*/
void Classify(const MatType& test, arma::Row<size_t>& predictedLabels);
/**
* Serialize the AdaBoost model.
*/
template<typename Archive>
void Serialize(Archive& ar, const unsigned int /* version */);
private:
//! The number of classes in the model.
size_t classes;
// The tolerance for change in rt and when to stop.
double tolerance;
//! The vector of weak learners.
std::vector<WeakLearnerType> wl;
//! The weights corresponding to each weak learner.
std::vector<double> alpha;
//! To check for the bound for the Hamming loss.
double ztProduct;
}; // class AdaBoost
} // namespace adaboost
} // namespace mlpack
#include "adaboost_impl.hpp"
#endif
|