This file is indexed.

/usr/include/mia-2.4/mia/template/divcurl.cxx is in libmia-2.4-dev 2.4.6-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
/* -*- mia-c++  -*-
 *
 * This file is part of MIA - a toolbox for medical image analysis 
 * Copyright (c) Leipzig, Madrid 1999-2017 Gert Wollny
 *
 * MIA is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with MIA; if not, see <http://www.gnu.org/licenses/>.
 *
 */

#include <limits>
#include <algorithm>

NS_MIA_BEGIN
template <typename T> 
TDivCurlFullCost<T>::TDivCurlFullCost(double weight_div, double weight_curl, double weight):
	TFullCost<T>(weight), 
	m_weight_div(weight_div), 
	m_weight_curl(weight_curl), 
	m_size_scale(1.0)
{
	this->add(::mia::property_gradient); 
}

template <typename T> 
double TDivCurlFullCost<T>::do_evaluate(const T& t, CDoubleVector& gradient) const
{
	assert(t.get_size() == this->get_current_size()); 
	double result = t.get_divcurl_cost(m_size_scale * m_weight_div, m_size_scale *m_weight_curl, gradient); 
	cvdebug() << "TDivCurlFullCost<T>::value = " << result << "\n"; 
	std::transform(gradient.begin(), gradient.end(), gradient.begin(), [](double x){return -1.0 * x;}); 
	return result; 
}

template <typename T> 
double TDivCurlFullCost<T>::do_value(const T& t) const
{
	double result = t.get_divcurl_cost(m_size_scale * m_weight_div, m_size_scale * m_weight_curl); 
	cvdebug() << "TDivCurlFullCost<T>::value = " << result << "\n"; 
	return result; 
}

template <typename T> 
double TDivCurlFullCost<T>::do_value() const
{
	cvwarn() << "Requesting DivCurl cost without a transformation doesn't make sense\n"; 
	return 0.0; 
}

template <typename T> 
void TDivCurlFullCost<T>::do_set_size()
{
	m_size_scale = 1.0 / (this->get_current_size().product()); 
}

template <typename T> 
bool TDivCurlFullCost<T>::do_get_full_size(Size& /*size*/) const
{
	return true; 
}


template <typename T> 
TDivcurlFullCostPlugin<T>::TDivcurlFullCostPlugin():
	TFullCostPlugin<T>("divcurl"), 
	m_div(1.0), 
	m_curl(1.0)
{
	this->add_parameter("div", new CFloatParameter(m_div, 0.0f, std::numeric_limits<float>::max(), 
						 false, "penalty weight on divergence"));
	this->add_parameter("curl", new CFloatParameter(m_curl, 0.0f, std::numeric_limits<float>::max(), 
						  false, "penalty weight on curl"));
}

template <typename T> 
TFullCost<T> *TDivcurlFullCostPlugin<T>::do_create(float weight) const
{
	cvdebug() << "create C2DDivCurlFullCost with weight= " << weight 
		  << " div=" << m_div << " curl=" << m_curl << "\n"; 
		
	return new TDivCurlFullCost<T>(this->m_div, this->m_curl, weight); 
}

template <typename T> 
const std::string TDivcurlFullCostPlugin<T>::do_get_descr() const
{
	return "divcurl penalty cost function"; 
}

NS_MIA_END