/usr/include/libMems-1.6/libMems/GreedyBreakpointElimination.h is in libmems-1.6-dev 1.6.0+4725-4build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 | #ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#ifndef __GreedyBreakpointElimination_h__
#define __GreedyBreakpointElimination_h__
#include <libMems/AbstractMatch.h>
#include <iostream>
#include <boost/multi_array.hpp>
#include <libMems/PhyloTree.h>
#include <libMems/SubstitutionMatrix.h>
#include <libMems/SeedOccurrenceList.h>
#include <libMems/IntervalList.h>
#include <libMems/LCB.h>
#include <stack>
namespace mems {
extern bool penalize_repeats;
/**
* A wrapper that maps a match among extant sequences to a match among ancestral and extant seqs
*/
template <class MatchType>
class LcbTrackingMatch
{
public:
MatchType original_match;
MatchType node_match;
size_t match_id; // used to index into global arrays of lcb_id and score
};
typedef LcbTrackingMatch< mems::AbstractMatch* > TrackingMatch;
/**
* This class is used to track relationships between LCBs during the LCB determination process.
*/
template <class MatchType>
class TrackingLCB
{
public:
TrackingLCB(){}
TrackingLCB( const TrackingLCB& l ){ *this = l; }
/** Constructs a TrackingLCB from a pairwise LCB */
TrackingLCB( const mems::LCB& l ){ *this = l; }
TrackingLCB& operator=( const mems::LCB& l )
{
left_end[0] = l.left_end[0];
left_end[1] = l.left_end[1];
right_end[0] = l.right_end[0];
right_end[1] = l.right_end[1];
left_adjacency[0] = l.left_adjacency[0];
left_adjacency[1] = l.left_adjacency[1];
right_adjacency[0] = l.right_adjacency[0];
right_adjacency[1] = l.right_adjacency[1];
lcb_id = l.lcb_id;
weight = l.weight;
to_be_deleted = false;
return *this;
}
int64 left_end[2]; /**< The left end position of the LCB in each sequence */
int64 right_end[2]; /**< The right end position of the LCB in each sequence */
uint left_adjacency[2]; /**< 'Pointers' (actually IDs) to the LCBs on the left in each sequence */
uint right_adjacency[2]; /**< 'Pointers' (actually IDs) to the LCBs on the right in each sequence */
double weight; /**< The weight (or coverage) of this LCB */
std::vector< MatchType > matches;
int lcb_id; /**< A numerical ID that can be assigned to this LCB */
bool to_be_deleted;
};
/** indicates an LCB identifier hasn't been assigned or is unknown */
const uint LCB_UNASSIGNED = (std::numeric_limits<uint>::max)();
typedef boost::multi_array< std::vector< TrackingLCB< TrackingMatch* > >, 2 > PairwiseLCBMatrix;
/**
* computes an anchoring score for the matches contained inside an LCB
*/
template< class MatchVector >
double GetPairwiseAnchorScore(
MatchVector& lcb, std::vector< genome::gnSequence* >& seq_table,
const mems::PairwiseScoringScheme& subst_scoring, mems::SeedOccurrenceList& sol_1,
mems::SeedOccurrenceList& sol_2, bool penalize_gaps = false );
class MoveScoreHeapComparator
{
public:
bool operator()( const std::pair< double, size_t >& a, const std::pair< double, size_t >& b ) const
{
return a.first < b.first; // want to order by > instead of <
}
};
/**
* Computes all pairwise LCBs from a set of tracking matches
*/
void getPairwiseLCBs(
uint nI,
uint nJ,
uint dI,
uint dJ,
std::vector< TrackingMatch* >& tracking_matches,
std::vector< TrackingLCB<TrackingMatch*> >& t_lcbs,
boost::multi_array< double, 3 >& tm_score_array,
boost::multi_array< size_t, 3 >& tm_lcb_id_array );
/** creates an appropriately sized matrix for mapping individual TrackingMatches to their containing LCBs */
void initTrackingMatchLCBTracking(
const std::vector< mems::TrackingMatch >& tracking_matches,
size_t n1_count,
size_t n2_count,
boost::multi_array< size_t, 3 >& tm_lcb_id_array );
/** removes an LCB from an LCB list and coalesces surrounding LCBs. Returns the number of LCBs removed
* After LCBs are removed, the adjacency list should be processed with filterLCBs()
* @param id_remaps This is populated with a list of LCB ids that were deleted or coalesced and now have a new LCB id
* for each coalesced LCB, an entry of the form <old id, new id> is added, deleted LCBs have
* entries of the form <deleted, -1>. Entries appear in the order operations were performed
* and the function undoLcbRemoval() can undo these operations in reverse order
*/
template< class LcbVector >
uint RemoveLCBandCoalesce( size_t lcbI, uint seq_count,
LcbVector& adjacencies,
std::vector< double >& scores,
std::vector< std::pair< uint, uint > >& id_remaps,
std::vector< uint >& impact_list );
void printMatch( mems::AbstractMatch* m, std::ostream& os );
inline
void printMatch( mems::AbstractMatch* m, std::ostream& os )
{
for( size_t ii = 0; ii < m->SeqCount(); ++ii )
{
if( ii > 0 )
os << '\t';
os << "(" << m->Start(ii) << "," << m->RightEnd(ii) << ")";
}
}
void printProgress( uint prev_prog, uint cur_prog, std::ostream& os );
template< typename PairType >
class LabelSort
{
public:
LabelSort( uint seqI ) : ssc( seqI ) {};
bool operator()( const PairType& pt1, const PairType& pt2 )
{
return ssc( pt1.first, pt2.first );
}
private:
LabelSort();
mems::SSC<mems::AbstractMatch> ssc;
};
template<class MatchVector>
void IdentifyBreakpoints( MatchVector& mlist, std::vector<gnSeqI>& breakpoints )
{
if( mlist.size() == 0 )
return;
breakpoints = std::vector<gnSeqI>(1, mlist.size()-1);
mems::SSC<mems::AbstractMatch> ssc(0);
std::sort( mlist.begin(), mlist.end(), ssc );
typedef typename MatchVector::value_type value_type;
typedef std::pair< value_type, size_t > LabelPairType;
std::vector< LabelPairType > label_list;
typename MatchVector::iterator cur = mlist.begin();
typename MatchVector::iterator end = mlist.end();
size_t i = 0;
for( ;cur != end; ++cur )
{
label_list.push_back( std::make_pair( *cur, i ) );
++i;
}
uint seq_count = mlist[0]->SeqCount();
// check for breakpoints in each sequence
for( uint seqI = 1; seqI < seq_count; seqI++ )
{
LabelSort< LabelPairType > ls(seqI);
std::sort( label_list.begin(), label_list.end(), ls );
typename std::vector< LabelPairType >::const_iterator prev = label_list.begin();
typename std::vector< std::pair< typename MatchVector::value_type, size_t > >::const_iterator iter = label_list.begin();
typename std::vector< std::pair< typename MatchVector::value_type, size_t > >::const_iterator lab_end = label_list.end();
bool prev_orient = (*prev).first->Orientation(seqI) == (*prev).first->Orientation(0);
if( !prev_orient ) // if we start in a different orientation than the ref seq there's a bp here
breakpoints.push_back(prev->second);
for( ++iter; iter != lab_end; ++iter )
{
bool cur_orient = (*iter).first->Orientation(seqI) == (*iter).first->Orientation(0);
if( prev_orient == cur_orient &&
( ( prev_orient && (*prev).second + 1 == (*iter).second) ||
( !prev_orient && (*prev).second - 1 == (*iter).second)
)
)
{
prev_orient = cur_orient;
++prev;
continue; // no breakpoint here
}
// always add the last match in a new block (scanning from left to right in seq 0)
if( prev_orient )
breakpoints.push_back( prev->second );
if( !cur_orient )
breakpoints.push_back( iter->second );
prev_orient = cur_orient;
++prev;
}
if( prev_orient )
breakpoints.push_back( prev->second );
}
std::sort( breakpoints.begin(), breakpoints.end() );
std::vector<gnSeqI>::iterator uni = std::unique( breakpoints.begin(), breakpoints.end() );
breakpoints.erase( uni, breakpoints.end() );
}
template< class MatchVector >
void ComputeLCBs_v2( const MatchVector& meml, const std::vector<gnSeqI>& breakpoints, std::vector< MatchVector >& lcb_list )
{
// there must be at least one end of a block defined
if( breakpoints.size() < 1 )
return;
lcb_list.clear();
// organize the LCBs into different MatchVector instances
std::vector<gnSeqI>::const_iterator break_iter = breakpoints.begin();
uint prev_break = 0; // prev_break is the first match in the current block
MatchVector lcb;
for( ; break_iter != breakpoints.end(); ++break_iter ){
// add the new MatchList to the set if it made the cut
lcb_list.push_back( lcb );
lcb_list.back().insert( lcb_list.back().end(), meml.begin() + prev_break, meml.begin() + *break_iter + 1 );
prev_break = *break_iter + 1;
}
}
template <class MatchVector>
void computeLCBAdjacencies_v3( const std::vector< MatchVector >& lcb_list, std::vector< double >& weights, std::vector< mems::LCB >& adjacencies )
{
adjacencies.clear(); // start with no LCB adjacencies
if( lcb_list.size() == 0 )
return; // there aren't any LCBs so there aren't any adjacencies!
uint seq_count = lcb_list.front().front()->SeqCount();
uint seqI;
uint lcbI;
for( lcbI = 0; lcbI < lcb_list.size(); ++lcbI ){
mems::LCB lcb;
std::vector<gnSeqI> left_end;
std::vector<gnSeqI> length;
std::vector<bool> orientation;
FindBoundaries( lcb_list[lcbI], left_end, length, orientation );
lcb.left_adjacency = std::vector<uint>( left_end.size(), -1 );
lcb.right_adjacency = std::vector<uint>( left_end.size(), -1 );
lcb.left_end = std::vector<int64>( left_end.size(), 0 );
lcb.right_end = std::vector<int64>( left_end.size(), 0 );
for( seqI = 0; seqI < seq_count; seqI++ ){
// support "ragged edges" on the ends of LCBs
if( left_end[seqI] == mems::NO_MATCH )
continue;
lcb.left_end[seqI] = left_end[seqI];
lcb.right_end[seqI] = left_end[seqI] + length[seqI];
if( !orientation[seqI] )
{
lcb.left_end[seqI] = -lcb.left_end[seqI];
lcb.right_end[seqI] = -lcb.right_end[seqI];
}
}
lcb.lcb_id = adjacencies.size();
lcb.weight = weights[ lcbI ];
adjacencies.push_back( lcb );
}
for( seqI = 0; seqI < seq_count; seqI++ ){
mems::LCBLeftComparator llc( seqI );
std::sort( adjacencies.begin(), adjacencies.end(), llc );
for( lcbI = 1; lcbI + 1 < lcb_list.size(); lcbI++ ){
adjacencies[ lcbI ].left_adjacency[ seqI ] = adjacencies[ lcbI - 1 ].lcb_id;
adjacencies[ lcbI ].right_adjacency[ seqI ] = adjacencies[ lcbI + 1 ].lcb_id;
}
if( lcbI == lcb_list.size() )
lcbI--; // need to decrement when there is only a single LCB
// set first and last lcb adjacencies to -1
adjacencies[ 0 ].left_adjacency[ seqI ] = (uint)-1;
adjacencies[ lcbI ].right_adjacency[ seqI ] = (uint)-1;
if( lcbI > 0 ){
adjacencies[ 0 ].right_adjacency[ seqI ] = adjacencies[ 1 ].lcb_id;
adjacencies[ lcbI ].left_adjacency[ seqI ] = adjacencies[ lcbI - 1 ].lcb_id;
}
}
mems::LCBIDComparator lic;
std::sort( adjacencies.begin(), adjacencies.end(), lic );
}
/**
* Redesign to be more intuitive. left_adjacency is always left, regardless of LCB orientation
*/
inline
void computeLCBAdjacencies_v3( mems::IntervalList& iv_list, std::vector< double >& weights, std::vector< mems::LCB >& adjacencies ){
std::vector< std::vector< mems::Interval* > > nivs;
for( size_t ivI = 0; ivI < iv_list.size(); ivI++ )
nivs.push_back( std::vector< mems::Interval* >( 1, &iv_list[ivI] ) );
computeLCBAdjacencies_v3( nivs, weights, adjacencies );
}
/**
* Takes a set of filtered LCB adjacencies and an unfiltered set of matches as input
* returns a filtered set of matches that reflects the LCBs found
*/
template< class MatchVector >
void filterMatches_v2( std::vector< mems::LCB >& adjacencies, std::vector< MatchVector >& lcb_list, std::vector< double >& weights, MatchVector& deleted_matches ){
if( lcb_list.size() < 1 )
return;
MatchVector lcb_tmp = lcb_list[ 0 ];
lcb_tmp.clear();
std::vector< MatchVector > filtered_lcbs( lcb_list.size(), lcb_tmp );
uint lcbI;
for( lcbI = 0; lcbI < adjacencies.size(); lcbI++ ){
if( adjacencies[ lcbI ].lcb_id == lcbI ){
filtered_lcbs[ lcbI ].insert( filtered_lcbs[ lcbI ].end(), lcb_list[ lcbI ].begin(), lcb_list[ lcbI ].end() );
continue;
}
if( adjacencies[ lcbI ].lcb_id == -1 ){
std::cerr << "weird";
continue; // this one was removed
}
if( adjacencies[ lcbI ].lcb_id == -2 )
{
deleted_matches.insert( deleted_matches.end(), lcb_list[lcbI].begin(), lcb_list[lcbI].end() );
continue; // this one was removed
}
// this one points elsewhere
// search and update the union/find structure for the target
std::stack< uint > visited_lcbs;
visited_lcbs.push( lcbI );
uint cur_lcb = adjacencies[ lcbI ].lcb_id;
while( adjacencies[ cur_lcb ].lcb_id != cur_lcb ){
visited_lcbs.push( cur_lcb );
cur_lcb = adjacencies[ cur_lcb ].lcb_id;
if( cur_lcb == -1 || cur_lcb == -2 ){
// std::cerr << "improper hoodidge\n";
break; // this one points to an LCB that got deleted
}
}
while( visited_lcbs.size() > 0 ){
adjacencies[ visited_lcbs.top() ].lcb_id = cur_lcb;
visited_lcbs.pop();
}
// add this LCB's matches to the target LCB.
if( cur_lcb != -1 && cur_lcb != -2 )
filtered_lcbs[ cur_lcb ].insert( filtered_lcbs[ cur_lcb ].end(), lcb_list[ lcbI ].begin(), lcb_list[ lcbI ].end() );
else
deleted_matches.insert( deleted_matches.end(), lcb_list[lcbI].begin(), lcb_list[lcbI].end() );
}
lcb_list.clear();
std::vector< double > new_weights;
for( lcbI = 0; lcbI < filtered_lcbs.size(); lcbI++ ){
if( filtered_lcbs[ lcbI ].size() > 0 ){
lcb_list.push_back( filtered_lcbs[ lcbI ] );
new_weights.push_back( weights[lcbI] );
}
}
// sort the matches inside consolidated LCBs
mems::MatchStartComparator<mems::AbstractMatch> msc( 0 );
for( lcbI = 0; lcbI < lcb_list.size(); lcbI++ ){
std::sort( lcb_list[ lcbI ].begin(), lcb_list[ lcbI ].end(), msc );
}
// calculate the LCB adjacencies
weights = new_weights;
computeLCBAdjacencies_v3( lcb_list, weights, adjacencies );
}
// predeclared to avoid need to include Islands.h
const score_t INV_SCORE = (std::numeric_limits<score_t>::max)();
void computeMatchScores( const std::string& seq1, const std::string& seq2, const PairwiseScoringScheme& scoring, std::vector<score_t>& scores );
void computeGapScores( const std::string& seq1, const std::string& seq2, const PairwiseScoringScheme& scoring, std::vector<score_t>& scores );
template< class MatchVector >
double GetPairwiseAnchorScore( MatchVector& lcb,
std::vector< genome::gnSequence* >& seq_table,
const mems::PairwiseScoringScheme& subst_scoring,
mems::SeedOccurrenceList& sol_1,
mems::SeedOccurrenceList& sol_2,
bool penalize_gaps )
{
double lcb_score = 0;
typename MatchVector::iterator match_iter = lcb.begin();
for( ; match_iter != lcb.end(); ++match_iter )
{
typedef typename MatchVector::value_type MatchPtrType;
MatchPtrType m = *match_iter;
std::vector< score_t > scores(m->AlignmentLength(), 0);
std::vector< std::string > et;
mems::GetAlignment(*m, seq_table, et);
// get substitution/gap score
mems::computeMatchScores( et[0], et[1], subst_scoring, scores );
if( penalize_gaps )
mems::computeGapScores( et[0], et[1], subst_scoring, scores );
// scale match scores by uniqueness
size_t merI = 0;
size_t merJ = 0;
double uni_count = 0;
double uni_score = 0;
const size_t m_aln_length = m->AlignmentLength();
const int64 m_leftend_0 = m->LeftEnd(0);
const int64 m_leftend_1 = m->LeftEnd(1);
for( size_t colI = 0; colI < m_aln_length; ++colI )
{
if(et[0][colI] != '-' && et[1][colI] != '-' )
{
mems::SeedOccurrenceList::frequency_type uni1 = sol_1.getFrequency(m_leftend_0 + merI - 1);
mems::SeedOccurrenceList::frequency_type uni2 = sol_2.getFrequency(m_leftend_1 + merJ - 1);
mems::SeedOccurrenceList::frequency_type uniprod = uni1*uni2;
uniprod = uniprod == 0 ? 1 : uniprod;
// scale by the uniqueness product, which approximates the number of ways to match up non-unique k-mers
// in the worst case of a very repetitive match, the score becomes the negative of the match score
if( scores[colI] > 0 )
{
if(penalize_repeats)
scores[colI] = (score_t)((double)scores[colI] * (2.0 / uniprod)) - scores[colI];
else
scores[colI] = (score_t)((mems::SeedOccurrenceList::frequency_type)scores[colI] / uniprod);
}
}
if(et[0][colI] != '-')
merI++;
if(et[1][colI] != '-')
merJ++;
}
double m_score = 0;
for( size_t i = 0; i < scores.size(); ++i )
if( scores[i] != INV_SCORE )
m_score += scores[i];
if( !( m_score > -1000000000 && m_score < 1000000000 ) )
{
std::cerr << "scoring error\n";
genome::breakHere();
}
lcb_score += m_score;
}
return lcb_score;
}
class EvenFasterSumOfPairsBreakpointScorer
{
public:
EvenFasterSumOfPairsBreakpointScorer(
double breakpoint_penalty,
double minimum_breakpoint_penalty,
boost::multi_array<double,2> bp_weight_matrix,
boost::multi_array<double,2> conservation_weight_matrix,
std::vector< TrackingMatch* > tracking_match,
mems::PairwiseLCBMatrix& pairwise_adjacency_matrix,
std::vector<node_id_t>& n1_descendants,
std::vector<node_id_t>& n2_descendants,
boost::multi_array< double, 3 >& tm_score_array,
boost::multi_array< size_t, 3 >& tm_lcb_id_array,
size_t seqI_begin,
size_t seqI_end,
size_t seqJ_begin,
size_t seqJ_end
);
/**
* Returns the number of possible moves a search algorithm may make from the current
* location in LCB search space. In this case it's simply the total number of pairwise LCBs
*/
size_t getMoveCount();
/** returns the score of the current state */
double score();
/** scores a move */
double operator()( std::pair< double, size_t >& the_move );
/** checks whether a particular move is a valid move */
bool isValid( std::pair< double, size_t >& the_move );
bool remove( std::pair< double, size_t >& the_move, std::vector< std::pair< double, size_t > >& new_move_list, size_t& new_move_count );
/** applies a score difference */
void applyScoreDifference( boost::multi_array< double, 2 >& lcb_score_diff, boost::multi_array< size_t, 2 >& lcb_removed_count );
/** undoes a score difference, if it wasn't accepted for example */
void undoScoreDifference( boost::multi_array< double, 2 >& lcb_score_diff, boost::multi_array< size_t, 2 >& lcb_removed_count );
/** returns the maximum number of new moves generated by any LCB removal */
size_t getMaxNewMoveCount();
/** call to indicate that the given LCB has been removed
* @param really_remove set to false if the move should merely be checked for validity
* returns false if the move was invalid
*/
bool remove( std::pair< double, size_t >& the_move, bool really_remove,
boost::multi_array< double, 2 >& lcb_score_diff, boost::multi_array< size_t, 2 >& lcb_removed_count,
bool score_new_moves, std::vector< std::pair< double, size_t > >& new_move_list, size_t& new_move_count );
/** returns the final set of TrackingMatch values which remain after applying greedy breakpoint elimination */
std::vector< mems::TrackingMatch* > getResults();
/** sanity checks all internal data structures */
bool validate();
protected:
double bp_penalty;
boost::multi_array<double,2> bp_weights;
boost::multi_array<double,2> conservation_weights;
std::vector< mems::TrackingMatch* > tracking_matches;
mems::PairwiseLCBMatrix pairwise_adjacencies;
std::vector<node_id_t> n1_des;
std::vector<node_id_t> n2_des;
boost::multi_array< size_t, 2 > pairwise_lcb_count;
boost::multi_array< double, 2 > pairwise_lcb_score;
std::vector< TrackingMatch* > deleted_tracking_matches;
double min_breakpoint_penalty;
private:
// avoid continuous size lookup
const size_t seqI_count;
const size_t seqJ_count;
// variables used during score computation
boost::multi_array< std::vector< std::pair< uint, uint > >, 2 > all_id_remaps;
boost::multi_array< std::vector< uint >, 2 > full_impact_list;
boost::multi_array< double, 2 > internal_lcb_score_diff[3];
boost::multi_array< size_t, 2 > internal_lcb_removed_count[3];
int using_lsd;
std::vector< double > lsd_zeros;
std::vector< size_t > lrc_zeros;
std::vector< double > bogus_scores;
std::vector< size_t > my_del_lcbs;
std::vector< size_t > lcb_ids;
boost::multi_array< double, 3 >& tm_score_array;
boost::multi_array< size_t, 3 >& tm_lcb_id_array;
// limit to a range of sequences
const size_t seqI_first;
const size_t seqJ_first;
const size_t seqI_last;
const size_t seqJ_last;
// for debugging
bool first_time;
};
template< class BreakpointScorerType >
int64 greedyBreakpointElimination_v4( std::vector< mems::LCB >& adjacencies, std::vector< double >& scores, BreakpointScorerType& bp_scorer, std::ostream* status_out, size_t g1_tag = 0, size_t g2_tag = 0 );
template< class SearchScorer >
double greedySearch( SearchScorer& spbs );
/**
* A breakpoint scorer that applies a fixed penalty for each breakpoint that exists in a set of
* two or more sequences
*/
class SimpleBreakpointScorer
{
public:
SimpleBreakpointScorer( std::vector< LCB >& adjacencies, double breakpoint_penalty, bool collinear );
size_t getMoveCount();
double score();
bool isValid( size_t lcbI, double move_score );
/** return the relative change in score if lcbI were to be removed */
double operator()( size_t lcbI );
/** call to indicate that the given LCB has been removed */
void remove( uint lcbI, std::vector< std::pair< double, size_t > >& new_moves );
private:
std::vector< mems::LCB > adjs;
double bp_penalty;
std::vector< double > scores;
double total_weight;
size_t bp_count;
bool collinear;
};
class GreedyRemovalScorer
{
public:
GreedyRemovalScorer( std::vector< LCB >& adjacencies, double minimum_weight );
size_t getMoveCount();
double score();
bool isValid( size_t lcbI, double move_score );
/** return the relative change in score if lcbI were to be removed */
double operator()( size_t lcbI );
/** call to indicate that the given LCB has been removed */
void remove( uint lcbI, std::vector< std::pair< double, size_t > >& new_moves );
private:
std::vector< mems::LCB > adjs;
double min_weight;
std::vector< double > scores;
double total_weight;
};
template< class BreakpointScorerType >
int64 greedyBreakpointElimination_v4( std::vector< mems::LCB >& adjacencies,
std::vector< double >& scores, BreakpointScorerType& bp_scorer, std::ostream* status_out,
size_t g1_tag, size_t g2_tag )
{
// repeatedly remove the low weight LCBs until the minimum weight criteria is satisfied
uint lcb_count = adjacencies.size();
double total_initial_lcb_weight = 0;
for( size_t wI = 0; wI < scores.size(); wI++ )
total_initial_lcb_weight += scores[wI];
double total_current_lcb_weight = total_initial_lcb_weight;
if( adjacencies.size() == 0 )
return 0; // nothing can be done
uint seq_count = adjacencies[0].left_end.size();
double prev_score = bp_scorer.score();
uint report_frequency = 10;
uint moves_made = 0;
size_t move_count = bp_scorer.getMoveCount();
std::vector< std::pair< double, size_t > > move_heap( move_count * 2 );
size_t heap_end = move_count;
for( size_t moveI = 0; moveI < move_count; ++moveI )
{
move_heap[moveI].first = bp_scorer(moveI);
move_heap[moveI].second = moveI;
}
#ifdef LCB_WEIGHT_LOSS_PLOT
std::vector< double >::iterator min_iter = std::min_element(scores.begin(), scores.end());
double mins = *min_iter;
if( status_out != NULL )
{
(*status_out) << g1_tag << '\t' << g2_tag << '\t' << lcb_count << '\t' << 1 - (total_current_lcb_weight / total_initial_lcb_weight) << '\t' << mins << endl;
}
#endif
// make a heap of moves ordered by score
// repeatedly:
// 1) pop the highest scoring move off the heap
// 2) attempt to apply the move
// 3) add any new moves to the heap
// 4) stop when the highest scoring move no longer increases the score
MoveScoreHeapComparator mshc;
std::make_heap( move_heap.begin(), move_heap.end(), mshc );
while( heap_end > 0 )
{
std::pop_heap( move_heap.begin(), move_heap.begin()+heap_end, mshc );
heap_end--;
std::pair< double, size_t > best_move = move_heap[ heap_end ];
#ifdef LCB_WEIGHT_LOSS_PLOT
if( total_current_lcb_weight == scores[best_move.second] )
break; // don't remove the last LCB
#else
if( (best_move.first < 0 ) ||
total_current_lcb_weight == scores[best_move.second] )
break; // can't improve score
#endif
std::vector< std::pair< double, size_t > > new_moves;
bool success = bp_scorer.isValid(best_move.second, best_move.first);
if( !success )
continue;
bp_scorer.remove(best_move.second, new_moves);
for( size_t newI = 0; newI < new_moves.size(); newI++ )
{
if( heap_end < move_heap.size() )
{
heap_end++;
move_heap[heap_end-1] = new_moves[newI];
std::push_heap( move_heap.begin(), move_heap.begin()+heap_end, mshc );
}else{
// just push the rest on all at once
size_t prev_size = move_heap.size();
move_heap.insert( move_heap.end(), new_moves.begin()+newI, new_moves.end() );
for( size_t newdI = 0; newdI < new_moves.size()-newI; newdI++ )
std::push_heap( move_heap.begin(), move_heap.begin()+prev_size+newdI+1, mshc );
heap_end = move_heap.size();
break;
}
}
total_current_lcb_weight -= scores[best_move.second];
std::vector< std::pair< uint, uint > > id_remaps;
std::vector< uint > impact_list;
lcb_count -= RemoveLCBandCoalesce( best_move.second, adjacencies[0].left_end.size(), adjacencies, scores, id_remaps, impact_list );
#ifdef LCB_WEIGHT_LOSS_PLOT
mins = scores[best_move.second];
if( status_out != NULL )
{
(*status_out) << g1_tag << '\t' << g2_tag << '\t' << lcb_count << '\t' << 1 - (total_current_lcb_weight / total_initial_lcb_weight) << '\t' << mins << endl;
}
#endif
double cur_score = bp_scorer.score();
prev_score = cur_score;
moves_made++;
#ifndef LCB_WEIGHT_LOSS_PLOT
if( status_out != NULL && moves_made % report_frequency == 0 )
(*status_out) << "move: " << moves_made << " alignment score " << cur_score << std::endl;
#endif
}
return 0;
}
extern bool debug_aligner;
/** finds the best anchoring, returns the anchoring score */
template< class SearchScorer >
double greedySearch( SearchScorer& spbs )
{
double prev_score = spbs.score();
uint report_frequency = 10;
uint moves_made = 0;
if( debug_aligner )
spbs.validate();
size_t move_count = spbs.getMoveCount();
std::vector< double > current_moves( spbs.getMoveCount() );
// use double the size for the move heap to avoid an almost instant reallocation
// when a new move gets pushed onto the heap
size_t heap_end = spbs.getMoveCount();
std::vector< std::pair< double, size_t > > move_heap( spbs.getMoveCount() * 2 );
std::vector< std::pair< double, size_t > > new_moves( spbs.getMaxNewMoveCount() + 10 );
for( size_t moveI = 0; moveI < move_count; ++moveI )
{
std::pair< double, size_t > p( 0, moveI );
double scorediff = spbs(p) - prev_score;
p.first = scorediff;
move_heap[moveI] = p;
current_moves[moveI] = p.first;
}
if( debug_aligner )
spbs.validate();
// make a heap of moves ordered by score
// repeatedly:
// 1) pop the highest scoring move off the heap
// 2) attempt to apply the move
// 3) add any new moves to the heap
// 4) stop when the highest scoring move no longer increases the score
MoveScoreHeapComparator mshc;
std::make_heap( move_heap.begin(), move_heap.begin() + heap_end, mshc );
double successful = 0;
double invalids = 0;
int progress = 0;
int prev_progress = -1;
while( heap_end > 0 )
{
std::pop_heap( move_heap.begin(), move_heap.begin()+heap_end, mshc );
std::pair< double, size_t > best_move = move_heap[--heap_end];
if( best_move.first < 0 )
break; // can't improve score
if( best_move.first != current_moves[best_move.second] )
continue;
if( !spbs.isValid(best_move) )
{
invalids++;
continue;
}
size_t new_move_count = 0;
bool success = spbs.remove(best_move, new_moves, new_move_count);
if( !success )
{
std::cerr << "numerical instability? need to investigate this...\n";
// genome::breakHere();
invalids++;
continue;
}
successful++;
if( debug_aligner )
spbs.validate();
current_moves[ best_move.second ] = -(std::numeric_limits<double>::max)();
for( size_t newI = 0; newI < new_move_count; newI++ )
current_moves[ new_moves[newI].second ] = new_moves[newI].first;
for( size_t newI = 0; newI < new_move_count; newI++ )
{
if( heap_end < move_heap.size() )
{
heap_end++;
move_heap[heap_end-1] = new_moves[newI];
std::push_heap( move_heap.begin(), move_heap.begin()+heap_end, mshc );
}else{
// just push the rest on all at once
move_heap.resize( (std::min)((size_t)(heap_end * 1.6), heap_end + new_move_count) );
std::copy( new_moves.begin() + newI, new_moves.begin() + new_move_count, move_heap.begin()+heap_end );
for( size_t newdI = 0; newdI < new_move_count-newI; newdI++ )
std::push_heap( move_heap.begin(), move_heap.begin()+heap_end+newdI+1, mshc );
heap_end = move_heap.size();
break;
}
}
moves_made++;
prev_progress = progress;
progress = (100 * moves_made) / move_count;
printProgress( prev_progress, progress, std::cout );
// if( moves_made % report_frequency == 0 )
// cout << "move: " << moves_made << " alignment score " << cur_score << " success ratio " << successful / invalids << endl;
}
return spbs.score();
}
struct AlnProgressTracker
{
gnSeqI total_len;
gnSeqI cur_leftend;
double prev_progress;
};
} // namespace mems
#endif // __greedyBreakpointElimination_h__
|