/usr/include/libMems-1.6/libMems/CompactGappedAlignment.h is in libmems-1.6-dev 1.6.0+4725-4build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 | /*******************************************************************************
* $Id: CompactGappedAlignment.h,v 1.12 2004/04/19 23:10:50 darling Exp $
* This file is copyright 2002-2007 Aaron Darling and authors listed in the AUTHORS file.
* This file is licensed under the GPL.
* Please see the file called COPYING for licensing details.
* **************
******************************************************************************/
#ifndef __CompactGappedAlignment_h__
#define __CompactGappedAlignment_h__
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "libGenome/gnDebug.h"
#include "libGenome/gnFilter.h"
#include "libGenome/gnSequence.h"
#include "libMems/SparseAbstractMatch.h"
#include "libMems/HybridAbstractMatch.h"
#include "libMems/AbstractGappedAlignment.h"
#include "libMems/UngappedLocalAlignment.h"
#include <algorithm>
#ifdef WIN32
#include "windows.h"
#endif
namespace mems {
/**
* The CompactGappedAlignment stores a gapped alignment as a bit-vector
* Rather than using one byte per aligned position, this class uses one bit, making
* particularly space efficient
*/
template< class BaseType = AbstractGappedAlignment< HybridAbstractMatch<> > >
class CompactGappedAlignment : public BaseType
{
public:
CompactGappedAlignment() : BaseType(){};
CompactGappedAlignment( uint seq_count, gnSeqI align_length );
CompactGappedAlignment( std::vector< bitset_t >& aln_mat, gnSeqI alignment_length );
template< class MatchType >
CompactGappedAlignment( MatchType& m ) :
BaseType( m.SeqCount(), m.AlignmentLength() ),
bcount( std::vector< std::vector< size_t > >( m.SeqCount() ) )
{
m.GetAlignment(align_matrix);
for( uint seqI = 0; seqI < this->SeqCount(); seqI++ )
{
this->SetStart(seqI, m.Start(seqI));
if( m.Start(seqI) != NO_MATCH )
this->SetLength(m.Length(seqI), seqI);
else
this->SetLength(0, seqI);
}
this->create_bitcount();
if( !this->validate() )
std::cerr << "kahnstruct error\n";
}
CompactGappedAlignment* Clone() const { return new CompactGappedAlignment( *this ); }
CompactGappedAlignment* Copy() const;
virtual void Free();
void SetAlignment( const std::vector< std::string >& seq_align );
void SetAlignment( std::vector< bitset_t >& seq_align );
// Inherited methods from AbstractMatch:
virtual void Invert();
virtual void CropStart(gnSeqI crop_amount);
virtual void CropEnd(gnSeqI crop_amount);
virtual void CropLeft(gnSeqI crop_amount, uint seqI);
virtual void CropRight(gnSeqI crop_amount, uint seqI);
void GetAlignment( std::vector< bitset_t >& align_matrix ) const;
/** allows a peek at the data inside this alignment. don't change it or the CompactGappedAlignment will become corrupt */
const std::vector< bitset_t >& GetAlignment() const{ return align_matrix; }
// friend void GetAlignment( const CompactGappedAlignment& ga, const std::vector< genome::gnSequence* >& seq_table, std::vector<std::string>& alignment );
void GetColumn( gnSeqI col, std::vector<gnSeqI>& pos, std::vector<bool>& column ) const;
/** returns true if the given row,column of the alignment has a gap character */
virtual bool IsGap( uint seq, gnSeqI col ) const;
/** translate a cga to a new coordinate system */
void translate( CompactGappedAlignment& cga, uint cga_seq, uint my_seq, bool add_bits = true );
bool validate() const;
bool validate_bitcount() const;
void copyRange( CompactGappedAlignment& dest, gnSeqI left_column, gnSeqI length );
gnSeqI SeqPosToColumn( uint seq, int64 pos);
/** Eliminates any columns that contain only gap characters */
void CondenseGapColumns();
void swap( CompactGappedAlignment& other ){ swap(&other); }
protected:
// for use by derived classes in order to swap contents
void swap( CompactGappedAlignment* other ){
std::swap( align_matrix, other->align_matrix );
std::swap( bcount, other->bcount );
BaseType::swap( other );
}
std::vector< bitset_t > align_matrix; /**< aligned positions have true values, gaps are false */
std::vector< std::vector< size_t > > bcount;
void create_bitcount();
gnSeqI SeqPosToColumn( gnSeqI pos, const bitset_t& bvec, const std::vector< size_t >& index ) const;
};
static bool debug_cga = false;
template< class BaseType >
CompactGappedAlignment<BaseType>* CompactGappedAlignment<BaseType>::Copy() const
{
return m_allocateAndCopy( *this );
}
template< class BaseType >
void CompactGappedAlignment<BaseType>::Free()
{
m_free(this);
}
template< class BaseType >
bool CompactGappedAlignment<BaseType>::validate() const
{
if( !debug_cga )
return true;
bool good = true;
for( uint seqI = 0; seqI < this->SeqCount(); seqI++ )
{
if( this->AlignmentLength() != align_matrix[seqI].size() )
{
good = false;
std::cerr << "vanishing pig trick\n";
genome::breakHere();
}
gnSeqI count = align_matrix[seqI].count();
if( count > 0 && this->LeftEnd(seqI) == 0 )
{
good = false;
std::cerr << "boner_McHoserknob\n";
genome::breakHere();
}
if( (count == 0 || this->Length(seqI) == 0) && this->LeftEnd(seqI) != 0 )
{
good = false;
std::cerr << "Length(" << seqI << "): " << this->Length(seqI) << std::endl;
std::cerr << "LeftEnd(seqI): " << this->LeftEnd(seqI) << std::endl;
std::cerr << "spumante explosion\n";
genome::breakHere();
}
if( count != this->Length(seqI) )
{
std::cerr << "seqI: " << seqI << " count: " << count << " Length(seqI): " << this->Length(seqI) << std::endl;
std::cerr << "LeftEnd(seqI): " << this->LeftEnd(seqI) << std::endl;
std::cerr << "lendo mismatcho\n";
genome::breakHere();
return false;
}
// std::vector< std::vector< size_t > > tmp_bcount = bcount;
// create_bitcount();
// if( !tmp_bcount == bcount )
// {
// good = false;
// std::cerr << "bcount mismatch!!!\n";
// }
// bcount = tmp_bcount;
}
if( good ) // check for all gap cols
{
/* allow gap cols...
for( size_t colI = 0; colI < this->AlignmentLength(); ++colI )
{
bool aa = false;
for( uint seqI = 0; seqI < this->SeqCount(); seqI++ )
aa = aa || align_matrix[seqI].test(colI);
if( aa == false )
{
std::cerr << "gap col at " << colI << std::endl;
genome::breakHere();
}
}
*/
}
return validate_bitcount() && good;
}
template< class BaseType >
CompactGappedAlignment<BaseType>::CompactGappedAlignment( std::vector< bitset_t >& aln_mat, gnSeqI alignment_length ) :
BaseType( aln_mat.size(), alignment_length ),
align_matrix( aln_mat ),
bcount( std::vector< std::vector< size_t > >( aln_mat.size() ) )
{
this->create_bitcount();
this->validate_bitcount();
}
template< class BaseType >
CompactGappedAlignment<BaseType>::CompactGappedAlignment( uint seq_count, gnSeqI align_length ) :
BaseType( seq_count, align_length )
{}
template< class BaseType >
void CompactGappedAlignment<BaseType>::SetAlignment( const std::vector< std::string >& seq_align ){
if( seq_align.size() == 0 )
{
this->SetAlignmentLength(0);
return;
}
this->SetAlignmentLength(seq_align[0].size());
align_matrix = std::vector< bitset_t >( seq_align.size(), bitset_t( seq_align[0].size(), false ) );
bcount = std::vector< std::vector<size_t> >( seq_align.size() );
for( size_t seqI = 0; seqI < seq_align.size(); seqI++ )
{
bool nonzero = false;
for( size_t charI = 0; charI < seq_align[seqI].size(); charI++ )
if( seq_align[seqI][charI] != '-' )
{
align_matrix[seqI].set(charI);
nonzero = true;
}
}
this->create_bitcount();
}
template< class BaseType >
void CompactGappedAlignment<BaseType>::SetAlignment( std::vector< bitset_t >& seq_align )
{
std::swap( align_matrix, seq_align );
seq_align.clear();
if( align_matrix.size() > 0 )
this->SetAlignmentLength( align_matrix[0].size() );
else
this->SetAlignmentLength(0);
bcount = std::vector< std::vector<size_t> >(align_matrix.size());
this->create_bitcount();
this->validate_bitcount();
}
template< class BaseType >
void CompactGappedAlignment<BaseType>::GetAlignment( std::vector< bitset_t >& align_matrix ) const
{
align_matrix = this->align_matrix;
}
template< class BaseType >
bool CompactGappedAlignment<BaseType>::IsGap( uint seq, gnSeqI col ) const
{
return !align_matrix[seq][col];
}
static const unsigned INDEX_INTERVAL = 512;
template< class BaseType >
void CompactGappedAlignment<BaseType>::create_bitcount()
{
for( uint seqI = 0; seqI < this->SeqCount(); seqI++ )
{
// if( this->LeftEnd(seqI) == NO_MATCH )
// continue;
bitset_t& bvec = align_matrix[seqI];
bcount[seqI].clear();
bcount[seqI].push_back(0);
for( size_t indie = 0; indie + INDEX_INTERVAL <= bvec.size(); indie += INDEX_INTERVAL )
{
size_t end = indie + INDEX_INTERVAL;
size_t ct = 0;
for( size_t i = indie; i < end; ++i )
ct += bvec.test(i);
bcount[seqI].push_back( ct + bcount[seqI].back() );
}
}
}
template< class BaseType >
bool CompactGappedAlignment<BaseType>::validate_bitcount() const
{
if( !debug_cga )
return true;
bool valid = true; // innocent until proven guilty
for( uint seqI = 0; seqI < this->SeqCount(); seqI++ )
{
gnSeqI count = align_matrix[seqI].count();
size_t bc_len = align_matrix[seqI].size() / INDEX_INTERVAL;
if( count < INDEX_INTERVAL && bcount[seqI].size() == 0 )
continue; // a-ok here
if( bc_len + 1 != bcount[seqI].size() && (bcount[seqI].back() % INDEX_INTERVAL != 0) )
{
std::cerr << "bitcount problem, bc_len + 1: " << bc_len + 1 << " and bcount[seqI].size(): " << bcount[seqI].size() << std::endl;
std::cerr << "count: " << count << " and bcount[seqI].back(): " << bcount[seqI].back() << std::endl;
valid = false;
}
if( count - bcount[seqI].back() > INDEX_INTERVAL )
{
std::cerr << "bitcount problem, count: " << count << " and bcount[seqI].back(): " << bcount[seqI].back() << std::endl;
valid = false;
}
}
return valid;
}
template< class BaseType >
gnSeqI CompactGappedAlignment<BaseType>::SeqPosToColumn( uint seq, int64 pos )
{
if( this->Orientation(seq) == AbstractMatch::forward )
pos = genome::absolut(pos) - this->LeftEnd(seq) + 1;
else
pos = this->RightEnd(seq)-genome::absolut(pos) + 1; // is this right?
return SeqPosToColumn(pos, align_matrix[seq], bcount[seq]);
}
template< class BaseType >
gnSeqI CompactGappedAlignment<BaseType>::SeqPosToColumn( gnSeqI pos, const bitset_t& bvec, const std::vector< size_t >& index ) const
{
std::vector<size_t>::const_iterator iter = std::lower_bound(index.begin(), index.end(), pos);
--iter;
size_t cur_pos = *iter;
size_t col = iter - index.begin();
col *= INDEX_INTERVAL;
if( col == 0 )
col = bvec.find_first();
else
col = bvec.find_next(col-1);
for( ++cur_pos; cur_pos < pos; ++cur_pos )
col = bvec.find_next(col);
return col;
}
template< class BaseType >
void CompactGappedAlignment<BaseType>::translate( CompactGappedAlignment& cga, uint cga_seq, uint my_seq, bool add_bits ) // const
{
AbstractMatch::orientation my_orient = this->Orientation(my_seq);
if( cga.Length(cga_seq) > this->Length(my_seq) )
{
std::cerr << "Oh scheisskopf. What are you trying to do to me??\n";
std::cerr << "cga.Length(" << cga_seq << "): " << cga.Length(cga_seq) << std::endl;
std::cerr << "Length(" << my_seq << "): " << this->Length(my_seq) << std::endl;
genome::breakHere();
}
gnSeqI prev_lend = cga.LeftEnd(cga_seq);
gnSeqI prev_len = cga.Length(cga_seq);
gnSeqI my_lend = this->LeftEnd(my_seq);
gnSeqI my_len = this->Length(my_seq);
gnSeqI my_count = 0;
uint seqI = 0;
// what assumptions should be made about cga?
// does it already have the correct left-end relative to this?
// no, it needs to have a left-end relative to the first aligned char in this
size_t cur_bit = 0;
// determine left_bit
size_t left_bit = this->SeqPosToColumn(cga.LeftEnd(cga_seq), align_matrix[my_seq], bcount[my_seq]);
// determine right_bit
size_t right_bit = this->SeqPosToColumn(cga.RightEnd(cga_seq), align_matrix[my_seq], bcount[my_seq]);
if( right_bit > 4000000000u )
{
std::cerr << "cga doesn't fit\n";
std::cerr << "cga.RightEnd(cga_seq) " << cga.RightEnd(cga_seq) << std::endl;
std::cerr << "RightEnd(my_seq): " << this->RightEnd(my_seq) << std::endl;
std::cerr << "cga.LeftEnd(cga_seq) " << cga.LeftEnd(cga_seq) << std::endl;
std::cerr << "LeftEnd(my_seq): " << this->LeftEnd(my_seq) << std::endl;
std::cerr << "cga.AlignmentLength(): " << cga.AlignmentLength() << std::endl;
std::cerr << "AlignmentLength(): " << this->AlignmentLength() << std::endl;
genome::breakHere();
}
right_bit++;
if( right_bit == 0 )
right_bit = this->AlignmentLength();
cga.SetLeftEnd(cga_seq,left_bit+1);
// add on length of unaligned left and right sides
size_t cga_left = cga.align_matrix[cga_seq].find_first();
size_t somesize = (right_bit - left_bit) - cga.Length(cga_seq) + cga.AlignmentLength();
size_t cga_bit = cga_left;
size_t my_bit = left_bit;
size_t xlat_bit = cga_left;
size_t added_bits = 0;
// copy in everything up to cga_left
std::vector< bitset_t > xrated( cga.SeqCount(), bitset_t( somesize, false ) );
for( size_t seqI = 0; seqI < xrated.size(); ++seqI )
for( size_t asdf = cga.align_matrix[seqI].find_first(); asdf < cga_left; asdf = cga.align_matrix[seqI].find_next(asdf) )
xrated[seqI].set(asdf);
while(xlat_bit < somesize)
{
// assume that align_matrix[my_seq][my_bit] is set
if( !align_matrix[my_seq].test(my_bit) )
{
std::cerr << "ohhhhhhzheiss!\n";
genome::breakHere();
}
// copy the column in cga
for( size_t seqI = 0; seqI < xrated.size(); ++seqI )
xrated[seqI].set( xlat_bit, cga.align_matrix[seqI].test(cga_bit) );
++cga_bit;
++xlat_bit;
if( xlat_bit >= somesize )
break;
// TODO: should this condition be replaced by cropping xlat_bit + diff - 1 down to < somesize?
if( cga.align_matrix[cga_seq].test(cga_bit) )
{
size_t next_bit = align_matrix[my_seq].find_next(my_bit);
if( next_bit > 4000000000u )
genome::breakHere();
size_t diff = next_bit - my_bit;
if( diff > 1 && add_bits )
{
if( xlat_bit + diff - 1 >= somesize )
{
std::cerr << "ERRRORRR porker!!\n";
genome::breakHere();
}
for( size_t i = xlat_bit; i < xlat_bit + diff - 1; ++i )
xrated[cga_seq].set(i);
added_bits += diff-1;
}
my_bit = next_bit;
xlat_bit += diff - 1;
}
}
cga.align_matrix = xrated;
cga.create_bitcount();
cga.SetLength(cga.Length(cga_seq)+added_bits,cga_seq);
cga.SetAlignmentLength(somesize);
if( !cga.validate() )
{
std::cerr << "prev_lend: " << prev_lend << std::endl;
std::cerr << "prev_len: " << prev_len << std::endl;
std::cerr << "translate error\n";
genome::breakHere();
}
}
template< class BaseType >
void CompactGappedAlignment<BaseType>::Invert(){
for(uint seqI = 0; seqI < this->SeqCount(); seqI++)
{
if( this->LeftEnd(seqI) == NO_MATCH )
continue;
bitset_t& fwd = align_matrix[seqI];
bitset_t rev(this->AlignmentLength());
size_t r = this->AlignmentLength();
for( size_t i = 0; i < fwd.size(); ++i )
rev.set( --r, fwd.test(i) );
fwd.swap(rev);
}
this->create_bitcount();
BaseType::Invert();
if( !this->validate() )
{
std::cerr << "invert error\n";
}
}
template< class BaseType >
void CompactGappedAlignment<BaseType>::CropStart(gnSeqI crop_amount){
if( crop_amount > this->AlignmentLength() )
Throw_gnEx( genome::SeqIndexOutOfBounds() );
if( crop_amount == 0 )
return;
gnSeqI pre_alignlen = this->AlignmentLength();
gnSeqI pre_lend0 = this->LeftEnd(0);
std::vector<gnSeqI> pos;
std::vector<bool> column;
GetColumn( crop_amount-1, pos, column );
for( uint i=0; i < this->SeqCount(); i++ ){
if( this->LeftEnd(i) == NO_MATCH )
{
align_matrix[i].resize(this->AlignmentLength()-crop_amount);
align_matrix[i] = align_matrix[i]; // force reallocation on "optimized" windows builds
continue;
}
align_matrix[i] >>= crop_amount; // why not shift left? is this a bug in boost::dynamic_bitset?
align_matrix[i].resize(this->AlignmentLength()-crop_amount);
align_matrix[i] = align_matrix[i]; // force reallocation on "optimized" windows builds
size_t char_count = this->Orientation(i) == AbstractMatch::forward ? pos[i] - this->LeftEnd(i) + 1 : this->RightEnd(i) - pos[i] + 1;
if( pos[i] > 0 && char_count > 0 )
{
this->SetLength(this->Length(i)-char_count, i);
if( this->Length(i) == 0 )
this->SetStart(i, NO_MATCH);
if( this->Orientation(i) == AbstractMatch::forward )
this->SetStart(i, this->Start(i) + char_count);
}else if( pos[i] == 0 && this->Orientation(i) == AbstractMatch::reverse )
{
// this sequence was completely obliterated by the crop
this->SetLength(0, i);
this->SetStart(i, NO_MATCH);
}
}
this->SetAlignmentLength( this->AlignmentLength() - crop_amount );
this->create_bitcount();
if( !this->validate() )
{
std::cerr << "pre_lend0: " << pre_lend0 << std::endl;
std::cerr << "pre_alignlen: " << pre_alignlen << std::endl;
std::cerr << "CropStart error\n";
}
}
template< class BaseType >
void CompactGappedAlignment<BaseType>::CropEnd(gnSeqI crop_amount){
if( crop_amount > this->AlignmentLength() )
Throw_gnEx( genome::SeqIndexOutOfBounds() );
if( crop_amount == 0 )
return;
std::vector<gnSeqI> pos;
std::vector<bool> column;
this->GetColumn( this->AlignmentLength()-crop_amount, pos, column );
for( uint i=0; i < this->SeqCount(); i++ ){
align_matrix[i].resize( this->AlignmentLength() - crop_amount );
align_matrix[i] = align_matrix[i]; // force reallocation on "optimized" windows builds
if( this->LeftEnd(i) == NO_MATCH )
continue;
AbstractMatch::orientation orient = this->Orientation(i);
if( pos[i] > 0 )
{
gnSeqI char_count = pos[i] - (orient == AbstractMatch::forward ? (column[i] ? 1 : 0 ) : (column[i] ? 0 : 1 ) );
char_count = orient == AbstractMatch::forward ? char_count - this->LeftEnd(i) + 1 : this->RightEnd(i) - char_count;
if( char_count == 0 && align_matrix[i].count() > 0)
{
std::cerr << "orienatation: " << (orient == AbstractMatch::forward ? "forward\n" : (orient == AbstractMatch::reverse ? "reverse\n" : "undef\n"));
std::cerr << "lend: " << this->LeftEnd(i) << std::endl;
std::cerr << "length: " << this->Length(i) << std::endl;
std::cerr << "count: " << align_matrix[i].count() << std::endl;
}
gnSeqI deleted = this->Length(i) - char_count;
this->SetLength(char_count, i);
if( this->Length(i) == 0 )
this->SetStart(i, 0);
if( this->Start(i) < 0 )
this->SetStart(i, this->Start(i)-deleted);
}else if( orient == AbstractMatch::forward ){
this->SetLength(0, i);
this->SetStart(i, 0);
}
}
this->SetAlignmentLength( this->AlignmentLength() - crop_amount );
this->create_bitcount();
if( !this->validate() )
std::cerr << "CropEnd error\n";
}
template< class BaseType >
void CompactGappedAlignment<BaseType>::CropLeft(gnSeqI crop_amount, uint seqI)
{
if( crop_amount == 0 )
return;
gnSeqI pre_len = this->Length(seqI);
// count "crop_amount" characters into seqI and crop there
if( this->Orientation(seqI) == AbstractMatch::forward )
{
size_t left_col = this->SeqPosToColumn(crop_amount, align_matrix[seqI], bcount[seqI]) + 1;
this->CropStart(left_col);
}else{
size_t left_col = this->SeqPosToColumn(this->Length(seqI) - crop_amount + 1, align_matrix[seqI], bcount[seqI]);
if( left_col > 4000000000u )
{
std::cerr << this->LeftEnd(seqI) << std::endl;
std::cerr << this->LeftEnd(0) << std::endl;
std::cerr << "bogus cropper cga\n";
}
this->CropEnd(this->AlignmentLength()-left_col);
}
if( this->Length(seqI) != pre_len - crop_amount )
{
std::cerr << this->LeftEnd(seqI) << std::endl;
std::cerr << this->LeftEnd(0) << std::endl;
std::cerr << "bad cropperLeftie\n";
}
if( !this->validate() )
std::cerr << "CropLeft error\n";
}
template< class BaseType >
void CompactGappedAlignment<BaseType>::CropRight(gnSeqI crop_amount, uint seqI)
{
if( crop_amount == 0 )
return;
gnSeqI pre_len = this->Length(seqI);
gnSeqI pre_lend = this->LeftEnd(seqI);
gnSeqI pre_lend0 = this->LeftEnd(0);
if( this->Orientation(seqI) == AbstractMatch::forward )
{
// count "crop_amount" characters into seqI and crop there
size_t right_col = this->SeqPosToColumn(this->Length(seqI) - crop_amount + 1, align_matrix[seqI], bcount[seqI]);
this->CropEnd( this->AlignmentLength()-right_col );
}else
{
size_t right_col = this->SeqPosToColumn(crop_amount, align_matrix[seqI], bcount[seqI]) + 1;
if( right_col > 4000000000u )
{
std::cerr << this->LeftEnd(seqI) << std::endl;
std::cerr << this->LeftEnd(0) << std::endl;
std::cerr << "bogus cropper cga\n";
}
this->CropStart( right_col );
}
if( this->Length(seqI) != pre_len - crop_amount )
{
std::cerr << this->LeftEnd(seqI) << std::endl;
std::cerr << this->LeftEnd(0) << std::endl;
std::cerr << "bad cropperight\n";
}
if( !this->validate() )
std::cerr << "CropRight error\n";
}
template< class BaseType >
void CompactGappedAlignment<BaseType>::GetColumn( gnSeqI col, std::vector<gnSeqI>& pos, std::vector<bool>& column ) const
{
pos = std::vector<gnSeqI>(this->SeqCount(), NO_MATCH);
column = std::vector<bool>(this->SeqCount(), false);
for( uint seqI = 0; seqI < this->SeqCount(); seqI++ )
{
if( align_matrix[seqI][col] )
column[seqI] = true;
gnSeqI count = 0;
if( this->LeftEnd(seqI) != NO_MATCH )
{
size_t col_index = col / INDEX_INTERVAL;
for( size_t i = col_index * INDEX_INTERVAL; i <= col; i++ )
count += align_matrix[seqI].test(i);
count += bcount[seqI][col_index];
}
if( count > 0 && this->Orientation(seqI) == AbstractMatch::forward )
pos[seqI] = this->LeftEnd(seqI) + count - 1;
else if( this->Orientation(seqI) == AbstractMatch::reverse && !(count == this->Length(seqI) && !column[seqI]) )
pos[seqI] = this->RightEnd(seqI) - count + 1;
}
}
template< class BaseType >
void CompactGappedAlignment<BaseType>::copyRange( CompactGappedAlignment& dest, gnSeqI left_column, gnSeqI length )
{
if( left_column + length > this->AlignmentLength() )
Throw_gnEx( genome::SeqIndexOutOfBounds() );
// if( length == 0 )
// return;
// first copy the coordinates
dest = CompactGappedAlignment(this->SeqCount(), length);
for( uint i=0; i < this->SeqCount(); i++ ){
dest.SetStart(i, this->Start(i));
if( this->Orientation(i) != AbstractMatch::undefined )
dest.SetLength(this->Length(i), i);
}
// then trim the coordinates appropriately
gnSeqI pre_alignlen = this->AlignmentLength();
gnSeqI pre_lend0 = this->LeftEnd(0);
std::vector< bitset_t > dest_mat(this->SeqCount(), bitset_t(length));
std::vector<gnSeqI> pos;
std::vector<bool> column;
std::vector<gnSeqI> left_cc(this->SeqCount(), 0);
if( left_column > 0 )
{
this->GetColumn( left_column-1, pos, column );
for( uint i=0; i < this->SeqCount(); i++ ){
if( this->LeftEnd(i) == NO_MATCH )
continue;
size_t char_count = this->Orientation(i) == AbstractMatch::forward ? pos[i] - this->LeftEnd(i) + 1 : this->RightEnd(i) - pos[i] + 1;
if( pos[i] > 0 && char_count > 0 )
{
left_cc[i] = char_count;
if( dest.Orientation(i) == AbstractMatch::forward )
dest.SetStart(i, dest.Start(i) + char_count);
}else if( pos[i] == 0 && dest.Orientation(i) == AbstractMatch::reverse )
{
// this sequence was completely obliterated by the crop
dest.SetStart(i, NO_MATCH);
}
}
}
// now trim up the right side...
gnSeqI right_trim = this->AlignmentLength() - left_column - length;
if( right_trim > 0 )
{
this->GetColumn( this->AlignmentLength()-right_trim, pos, column );
for( uint i=0; i < this->SeqCount(); i++ ){
if( this->LeftEnd(i) == NO_MATCH )
continue;
AbstractMatch::orientation orient = this->Orientation(i);
if( pos[i] > 0 )
{
gnSeqI char_count = pos[i] - (orient == AbstractMatch::forward ? (column[i] ? 1 : 0 ) : (column[i] ? 0 : 1 ) );
char_count = orient == AbstractMatch::forward ? char_count - this->LeftEnd(i) + 1 : this->RightEnd(i) - char_count;
char_count -= left_cc[i];
gnSeqI deleted = this->Length(i) - char_count;
if( dest.Start(i) < 0 )
dest.SetStart(i, dest.Start(i)-deleted+left_cc[i]); // fixme: is this off-by-one?
}else if( orient == AbstractMatch::forward ){
dest.SetStart(i, NO_MATCH);
}
}
}
for( size_t i = 0; i < dest_mat.size(); ++i )
{
size_t count = 0;
for( size_t j = 0; j < length; ++j )
{
if(align_matrix[i].test(j+left_column))
{
dest_mat[i].set(j, true);
++count;
}
}
dest.SetLength(count, i);
if( count == 0 )
dest.SetStart(i, NO_MATCH);
}
dest.SetAlignment(dest_mat);
dest.create_bitcount();
if( !dest.validate() )
{
std::cerr << "pre_lend0: " << pre_lend0 << std::endl;
std::cerr << "pre_alignlen: " << pre_alignlen << std::endl;
std::cerr << "CropStart error\n";
}
}
template< class BaseType >
void CompactGappedAlignment<BaseType>::CondenseGapColumns()
{
const size_t len = this->AlignmentLength();
size_t d = 0; // destination index
for( size_t i = 0; i < len; ++i )
{
size_t seqI = 0;
// check whether this is a gap col
for( ; seqI < align_matrix.size(); ++seqI )
if( this->LeftEnd(seqI) != 0 && align_matrix[seqI].test(i) )
break;
// copy if not a gap col (and i != d )
if( seqI < align_matrix.size() )
{
if( i != d )
{
for( seqI = 0; seqI < align_matrix.size(); ++seqI )
align_matrix[seqI].set( d, align_matrix[seqI].test(i) );
}
d++;
}
else
std::cout << "";
}
this->SetAlignmentLength(d);
for( size_t seqI = 0; seqI < align_matrix.size(); ++seqI )
{
align_matrix[seqI].resize(d);
align_matrix[seqI] = align_matrix[seqI]; // force reallocation on "optimized" windows builds
}
this->create_bitcount();
}
}
namespace std {
template<> inline
void swap( mems::CompactGappedAlignment<>& a, mems::CompactGappedAlignment<>& b )
{
a.swap(b);
}
}
#endif // __CompactGappedAlignment_h__
|