/usr/include/maxflow-3.0/maxflow/graph.h is in libmaxflow-dev 3.0.5-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 | /* graph.h */
/*
Copyright 2006-2015
Vladimir Kolmogorov (vnk@ist.ac.at), Yuri Boykov (yuri@csd.uwo.ca)
This file is part of MAXFLOW.
MAXFLOW is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
MAXFLOW is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with MAXFLOW. If not, see <http://www.gnu.org/licenses/>.
========================
version 3.03
This software library implements the maxflow algorithm
described in
"An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision."
Yuri Boykov and Vladimir Kolmogorov.
In IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),
September 2004
This algorithm was developed by Yuri Boykov and Vladimir Kolmogorov
at Siemens Corporate Research. To make it available for public use,
it was later reimplemented by Vladimir Kolmogorov based on open publications.
If you use this software for research purposes, you should cite
the aforementioned paper in any resulting publication.
----------------------------------------------------------------------
REUSING TREES:
Starting with version 3.0, there is a also an option of reusing search
trees from one maxflow computation to the next, as described in
"Efficiently Solving Dynamic Markov Random Fields Using Graph Cuts."
Pushmeet Kohli and Philip H.S. Torr
International Conference on Computer Vision (ICCV), 2005
If you use this option, you should cite
the aforementioned paper in any resulting publication.
*/
/*
For description, license, example usage see README.TXT.
*/
#ifndef __GRAPH_H__
#define __GRAPH_H__
#include <string.h>
#include "block.h"
#include <assert.h>
// NOTE: in UNIX you need to use -DNDEBUG preprocessor option to supress assert's!!!
namespace maxflow {
// captype: type of edge capacities (excluding t-links)
// tcaptype: type of t-links (edges between nodes and terminals)
// flowtype: type of total flow
//
// Current instantiations are in instances.inc
template <typename captype, typename tcaptype, typename flowtype> class Graph
{
public:
typedef enum
{
SOURCE = 0,
SINK = 1
} termtype; // terminals
typedef int node_id;
/////////////////////////////////////////////////////////////////////////
// BASIC INTERFACE FUNCTIONS //
// (should be enough for most applications) //
/////////////////////////////////////////////////////////////////////////
// Constructor.
// The first argument gives an estimate of the maximum number of nodes that can be added
// to the graph, and the second argument is an estimate of the maximum number of edges.
// The last (optional) argument is the pointer to the function which will be called
// if an error occurs; an error message is passed to this function.
// If this argument is omitted, exit(1) will be called.
//
// IMPORTANT: It is possible to add more nodes to the graph than node_num_max
// (and node_num_max can be zero). However, if the count is exceeded, then
// the internal memory is reallocated (increased by 50%) which is expensive.
// Also, temporarily the amount of allocated memory would be more than twice than needed.
// Similarly for edges.
// If you wish to avoid this overhead, you can download version 2.2, where nodes and edges are stored in blocks.
Graph(int node_num_max, int edge_num_max, void (*err_function)(const char *) = NULL);
// Destructor
~Graph();
// Adds node(s) to the graph. By default, one node is added (num=1); then first call returns 0, second call returns 1, and so on.
// If num>1, then several nodes are added, and node_id of the first one is returned.
// IMPORTANT: see note about the constructor
node_id add_node(int num = 1);
// Adds a bidirectional edge between 'i' and 'j' with the weights 'cap' and 'rev_cap'.
// IMPORTANT: see note about the constructor
void add_edge(node_id i, node_id j, captype cap, captype rev_cap);
// Adds new edges 'SOURCE->i' and 'i->SINK' with corresponding weights.
// Can be called multiple times for each node.
// Weights can be negative.
// NOTE: the number of such edges is not counted in edge_num_max.
// No internal memory is allocated by this call.
void add_tweights(node_id i, tcaptype cap_source, tcaptype cap_sink);
// Computes the maxflow. Can be called several times.
// FOR DESCRIPTION OF reuse_trees, SEE mark_node().
// FOR DESCRIPTION OF changed_list, SEE remove_from_changed_list().
flowtype maxflow(bool reuse_trees = false, Block<node_id>* changed_list = NULL);
// After the maxflow is computed, this function returns to which
// segment the node 'i' belongs (Graph<captype,tcaptype,flowtype>::SOURCE or Graph<captype,tcaptype,flowtype>::SINK).
//
// Occasionally there may be several minimum cuts. If a node can be assigned
// to both the source and the sink, then default_segm is returned.
termtype what_segment(node_id i, termtype default_segm = SOURCE) const;
//////////////////////////////////////////////
// ADVANCED INTERFACE FUNCTIONS //
// (provide access to the graph) //
//////////////////////////////////////////////
private:
struct node;
struct arc;
public:
////////////////////////////
// 1. Reallocating graph. //
////////////////////////////
// Removes all nodes and edges.
// After that functions add_node() and add_edge() must be called again.
//
// Advantage compared to deleting Graph and allocating it again:
// no calls to delete/new (which could be quite slow).
//
// If the graph structure stays the same, then an alternative
// is to go through all nodes/edges and set new residual capacities
// (see functions below).
void reset();
////////////////////////////////////////////////////////////////////////////////
// 2. Functions for getting pointers to arcs and for reading graph structure. //
// NOTE: adding new arcs may invalidate these pointers (if reallocation //
// happens). So it's best not to add arcs while reading graph structure. //
////////////////////////////////////////////////////////////////////////////////
// The following two functions return arcs in the same order that they
// were added to the graph. NOTE: for each call add_edge(i,j,cap,cap_rev)
// the first arc returned will be i->j, and the second j->i.
// If there are no more arcs, then the function can still be called, but
// the returned arc_id is undetermined.
typedef arc* arc_id;
arc_id get_first_arc();
arc_id get_next_arc(arc_id a);
// other functions for reading graph structure
int get_node_num() { return node_num; }
int get_arc_num() { return (int)(arc_last - arcs); }
void get_arc_ends(arc_id a, node_id& i, node_id& j); // returns i,j to that a = i->j
///////////////////////////////////////////////////
// 3. Functions for reading residual capacities. //
///////////////////////////////////////////////////
// returns residual capacity of SOURCE->i minus residual capacity of i->SINK
tcaptype get_trcap(node_id i);
// returns residual capacity of arc a
captype get_rcap(arc* a);
/////////////////////////////////////////////////////////////////
// 4. Functions for setting residual capacities. //
// NOTE: If these functions are used, the value of the flow //
// returned by maxflow() will not be valid! //
/////////////////////////////////////////////////////////////////
void set_trcap(node_id i, tcaptype trcap);
void set_rcap(arc* a, captype rcap);
////////////////////////////////////////////////////////////////////
// 5. Functions related to reusing trees & list of changed nodes. //
////////////////////////////////////////////////////////////////////
// If flag reuse_trees is true while calling maxflow(), then search trees
// are reused from previous maxflow computation.
// In this case before calling maxflow() the user must
// specify which parts of the graph have changed by calling mark_node():
// add_tweights(i),set_trcap(i) => call mark_node(i)
// add_edge(i,j),set_rcap(a) => call mark_node(i); mark_node(j)
//
// This option makes sense only if a small part of the graph is changed.
// The initialization procedure goes only through marked nodes then.
//
// mark_node(i) can either be called before or after graph modification.
// Can be called more than once per node, but calls after the first one
// do not have any effect.
//
// NOTE:
// - This option cannot be used in the first call to maxflow().
// - It is not necessary to call mark_node() if the change is ``not essential'',
// i.e. sign(trcap) is preserved for a node and zero/nonzero status is preserved for an arc.
// - To check that you marked all necessary nodes, you can call maxflow(false) after calling maxflow(true).
// If everything is correct, the two calls must return the same value of flow. (Useful for debugging).
void mark_node(node_id i);
// If changed_list is not NULL while calling maxflow(), then the algorithm
// keeps a list of nodes which could potentially have changed their segmentation label.
// Nodes which are not in the list are guaranteed to keep their old segmentation label (SOURCE or SINK).
// Example usage:
//
// typedef Graph<int,int,int> G;
// G* g = new Graph(nodeNum, edgeNum);
// Block<G::node_id>* changed_list = new Block<G::node_id>(128);
//
// ... // add nodes and edges
//
// g->maxflow(); // first call should be without arguments
// for (int iter=0; iter<10; iter++)
// {
// ... // change graph, call mark_node() accordingly
//
// g->maxflow(true, changed_list);
// G::node_id* ptr;
// for (ptr=changed_list->ScanFirst(); ptr; ptr=changed_list->ScanNext())
// {
// G::node_id i = *ptr; assert(i>=0 && i<nodeNum);
// g->remove_from_changed_list(i);
// // do something with node i...
// if (g->what_segment(i) == G::SOURCE) { ... }
// }
// changed_list->Reset();
// }
// delete changed_list;
//
// NOTE:
// - If changed_list option is used, then reuse_trees must be used as well.
// - In the example above, the user may omit calls g->remove_from_changed_list(i) and changed_list->Reset() in a given iteration.
// Then during the next call to maxflow(true, &changed_list) new nodes will be added to changed_list.
// - If the next call to maxflow() does not use option reuse_trees, then calling remove_from_changed_list()
// is not necessary. ("changed_list->Reset()" or "delete changed_list" should still be called, though).
void remove_from_changed_list(node_id i)
{
assert(i>=0 && i<node_num && nodes[i].is_in_changed_list);
nodes[i].is_in_changed_list = 0;
}
/////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////
private:
// internal variables and functions
struct node
{
arc *first; // first outcoming arc
arc *parent; // node's parent
node *next; // pointer to the next active node
// (or to itself if it is the last node in the list)
int TS; // timestamp showing when DIST was computed
int DIST; // distance to the terminal
int is_sink : 1; // flag showing whether the node is in the source or in the sink tree (if parent!=NULL)
int is_marked : 1; // set by mark_node()
int is_in_changed_list : 1; // set by maxflow if
tcaptype tr_cap; // if tr_cap > 0 then tr_cap is residual capacity of the arc SOURCE->node
// otherwise -tr_cap is residual capacity of the arc node->SINK
};
struct arc
{
node *head; // node the arc points to
arc *next; // next arc with the same originating node
arc *sister; // reverse arc
captype r_cap; // residual capacity
};
struct nodeptr
{
node *ptr;
nodeptr *next;
};
static const int NODEPTR_BLOCK_SIZE = 128;
node *nodes, *node_last, *node_max; // node_last = nodes+node_num, node_max = nodes+node_num_max;
arc *arcs, *arc_last, *arc_max; // arc_last = arcs+2*edge_num, arc_max = arcs+2*edge_num_max;
int node_num;
DBlock<nodeptr> *nodeptr_block;
void (*error_function)(const char *); // this function is called if a error occurs,
// with a corresponding error message
// (or exit(1) is called if it's NULL)
flowtype flow; // total flow
// reusing trees & list of changed pixels
int maxflow_iteration; // counter
Block<node_id> *changed_list;
/////////////////////////////////////////////////////////////////////////
node *queue_first[2], *queue_last[2]; // list of active nodes
nodeptr *orphan_first, *orphan_last; // list of pointers to orphans
int TIME; // monotonically increasing global counter
/////////////////////////////////////////////////////////////////////////
void reallocate_nodes(int num); // num is the number of new nodes
void reallocate_arcs();
// functions for processing active list
void set_active(node *i);
node *next_active();
// functions for processing orphans list
void set_orphan_front(node* i); // add to the beginning of the list
void set_orphan_rear(node* i); // add to the end of the list
void add_to_changed_list(node* i);
void maxflow_init(); // called if reuse_trees == false
void maxflow_reuse_trees_init(); // called if reuse_trees == true
void augment(arc *middle_arc);
void process_source_orphan(node *i);
void process_sink_orphan(node *i);
void test_consistency(node* current_node=NULL); // debug function
};
///////////////////////////////////////
// Implementation - inline functions //
///////////////////////////////////////
template <typename captype, typename tcaptype, typename flowtype>
inline typename Graph<captype,tcaptype,flowtype>::node_id Graph<captype,tcaptype,flowtype>::add_node(int num)
{
assert(num > 0);
if (node_last + num > node_max) reallocate_nodes(num);
memset(node_last, 0, num*sizeof(node));
node_id i = node_num;
node_num += num;
node_last += num;
return i;
}
template <typename captype, typename tcaptype, typename flowtype>
inline void Graph<captype,tcaptype,flowtype>::add_tweights(node_id i, tcaptype cap_source, tcaptype cap_sink)
{
assert(i >= 0 && i < node_num);
tcaptype delta = nodes[i].tr_cap;
if (delta > 0) cap_source += delta;
else cap_sink -= delta;
flow += (cap_source < cap_sink) ? cap_source : cap_sink;
nodes[i].tr_cap = cap_source - cap_sink;
}
template <typename captype, typename tcaptype, typename flowtype>
inline void Graph<captype,tcaptype,flowtype>::add_edge(node_id _i, node_id _j, captype cap, captype rev_cap)
{
assert(_i >= 0 && _i < node_num);
assert(_j >= 0 && _j < node_num);
assert(_i != _j);
assert(cap >= 0);
assert(rev_cap >= 0);
if (arc_last == arc_max) reallocate_arcs();
arc *a = arc_last ++;
arc *a_rev = arc_last ++;
node* i = nodes + _i;
node* j = nodes + _j;
a -> sister = a_rev;
a_rev -> sister = a;
a -> next = i -> first;
i -> first = a;
a_rev -> next = j -> first;
j -> first = a_rev;
a -> head = j;
a_rev -> head = i;
a -> r_cap = cap;
a_rev -> r_cap = rev_cap;
}
template <typename captype, typename tcaptype, typename flowtype>
inline typename Graph<captype,tcaptype,flowtype>::arc* Graph<captype,tcaptype,flowtype>::get_first_arc()
{
return arcs;
}
template <typename captype, typename tcaptype, typename flowtype>
inline typename Graph<captype,tcaptype,flowtype>::arc* Graph<captype,tcaptype,flowtype>::get_next_arc(arc* a)
{
return a + 1;
}
template <typename captype, typename tcaptype, typename flowtype>
inline void Graph<captype,tcaptype,flowtype>::get_arc_ends(arc* a, node_id& i, node_id& j)
{
assert(a >= arcs && a < arc_last);
i = (node_id) (a->sister->head - nodes);
j = (node_id) (a->head - nodes);
}
template <typename captype, typename tcaptype, typename flowtype>
inline tcaptype Graph<captype,tcaptype,flowtype>::get_trcap(node_id i)
{
assert(i>=0 && i<node_num);
return nodes[i].tr_cap;
}
template <typename captype, typename tcaptype, typename flowtype>
inline captype Graph<captype,tcaptype,flowtype>::get_rcap(arc* a)
{
assert(a >= arcs && a < arc_last);
return a->r_cap;
}
template <typename captype, typename tcaptype, typename flowtype>
inline void Graph<captype,tcaptype,flowtype>::set_trcap(node_id i, tcaptype trcap)
{
assert(i>=0 && i<node_num);
nodes[i].tr_cap = trcap;
}
template <typename captype, typename tcaptype, typename flowtype>
inline void Graph<captype,tcaptype,flowtype>::set_rcap(arc* a, captype rcap)
{
assert(a >= arcs && a < arc_last);
a->r_cap = rcap;
}
template <typename captype, typename tcaptype, typename flowtype>
inline typename Graph<captype,tcaptype,flowtype>::termtype Graph<captype,tcaptype,flowtype>::what_segment(node_id i, termtype default_segm) const
{
if (nodes[i].parent)
{
return (nodes[i].is_sink) ? SINK : SOURCE;
}
else
{
return default_segm;
}
}
template <typename captype, typename tcaptype, typename flowtype>
inline void Graph<captype,tcaptype,flowtype>::mark_node(node_id _i)
{
node* i = nodes + _i;
if (!i->next)
{
/* it's not in the list yet */
if (queue_last[1]) queue_last[1] -> next = i;
else queue_first[1] = i;
queue_last[1] = i;
i -> next = i;
}
i->is_marked = 1;
}
} // end namespace
#endif
|