/usr/include/maxflow-3.0/maxflow/block.h is in libmaxflow-dev 3.0.5-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 | /*
Copyright 2006-2015
Vladimir Kolmogorov (vnk@ist.ac.at), Yuri Boykov (yuri@csd.uwo.ca)
This file is part of MAXFLOW.
MAXFLOW is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
MAXFLOW is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with MAXFLOW. If not, see <http://www.gnu.org/licenses/>.
*/
/* block.h */
/* Vladimir Kolmogorov vnk@ist.ac.at */
/* Last modified 08/05/2012 */
/*
Template classes Block and DBlock
Implement adding and deleting items of the same type in blocks.
If there there are many items then using Block or DBlock
is more efficient than using 'new' and 'delete' both in terms
of memory and time since
(1) On some systems there is some minimum amount of memory
that 'new' can allocate (e.g., 64), so if items are
small that a lot of memory is wasted.
(2) 'new' and 'delete' are designed for items of varying size.
If all items has the same size, then an algorithm for
adding and deleting can be made more efficient.
(3) All Block and DBlock functions are inline, so there are
no extra function calls.
Differences between Block and DBlock:
(1) DBlock allows both adding and deleting items,
whereas Block allows only adding items.
(2) Block has an additional operation of scanning
items added so far (in the order in which they were added).
(3) Block allows to allocate several consecutive
items at a time, whereas DBlock can add only a single item.
Note that no constructors or destructors are called for items.
Example usage for items of type 'MyType':
///////////////////////////////////////////////////
#include "block.h"
#define BLOCK_SIZE 1024
typedef struct { int a, b; } MyType;
MyType *ptr, *array[10000];
...
Block<MyType> *block = new Block<MyType>(BLOCK_SIZE);
// adding items
for (int i=0; i<sizeof(array); i++)
{
ptr = block -> New();
ptr -> a = ptr -> b = rand();
}
// reading items
for (ptr=block->ScanFirst(); ptr; ptr=block->ScanNext())
{
printf("%d %d\n", ptr->a, ptr->b);
}
delete block;
...
DBlock<MyType> *dblock = new DBlock<MyType>(BLOCK_SIZE);
// adding items
for (int i=0; i<sizeof(array); i++)
{
array[i] = dblock -> New();
}
// deleting items
for (int i=0; i<sizeof(array); i+=2)
{
dblock -> Delete(array[i]);
}
// adding items
for (int i=0; i<sizeof(array); i++)
{
array[i] = dblock -> New();
}
delete dblock;
///////////////////////////////////////////////////
Note that DBlock deletes items by marking them as
empty (i.e., by adding them to the list of free items),
so that this memory could be used for subsequently
added items. Thus, at each moment the memory allocated
is determined by the maximum number of items allocated
simultaneously at earlier moments. All memory is
deallocated only when the destructor is called.
*/
#ifndef __BLOCK_H__
#define __BLOCK_H__
#include <stdlib.h>
/***********************************************************************/
/***********************************************************************/
/***********************************************************************/
namespace maxflow {
template <class Type> class Block
{
public:
/* Constructor. Arguments are the block size and
(optionally) the pointer to the function which
will be called if allocation failed; the message
passed to this function is "Not enough memory!" */
Block(int size, void (*err_function)(const char *) = NULL) { first = last = NULL; block_size = size; error_function = err_function; }
/* Destructor. Deallocates all items added so far */
~Block() { while (first) { block *next = first -> next; delete[] ((char*)first); first = next; } }
/* Allocates 'num' consecutive items; returns pointer
to the first item. 'num' cannot be greater than the
block size since items must fit in one block */
Type *New(int num = 1)
{
Type *t;
if (!last || last->current + num > last->last)
{
if (last && last->next) last = last -> next;
else
{
block *next = (block *) new char [sizeof(block) + (block_size-1)*sizeof(Type)];
if (!next) { if (error_function) (*error_function)("Not enough memory!"); exit(1); }
if (last) last -> next = next;
else first = next;
last = next;
last -> current = & ( last -> data[0] );
last -> last = last -> current + block_size;
last -> next = NULL;
}
}
t = last -> current;
last -> current += num;
return t;
}
/* Returns the first item (or NULL, if no items were added) */
Type *ScanFirst()
{
for (scan_current_block=first; scan_current_block; scan_current_block = scan_current_block->next)
{
scan_current_data = & ( scan_current_block -> data[0] );
if (scan_current_data < scan_current_block -> current) return scan_current_data ++;
}
return NULL;
}
/* Returns the next item (or NULL, if all items have been read)
Can be called only if previous ScanFirst() or ScanNext()
call returned not NULL. */
Type *ScanNext()
{
while (scan_current_data >= scan_current_block -> current)
{
scan_current_block = scan_current_block -> next;
if (!scan_current_block) return NULL;
scan_current_data = & ( scan_current_block -> data[0] );
}
return scan_current_data ++;
}
struct iterator; // for overlapping scans
Type *ScanFirst(iterator& i)
{
for (i.scan_current_block=first; i.scan_current_block; i.scan_current_block = i.scan_current_block->next)
{
i.scan_current_data = & ( i.scan_current_block -> data[0] );
if (i.scan_current_data < i.scan_current_block -> current) return i.scan_current_data ++;
}
return NULL;
}
Type *ScanNext(iterator& i)
{
while (i.scan_current_data >= i.scan_current_block -> current)
{
i.scan_current_block = i.scan_current_block -> next;
if (!i.scan_current_block) return NULL;
i.scan_current_data = & ( i.scan_current_block -> data[0] );
}
return i.scan_current_data ++;
}
/* Marks all elements as empty */
void Reset()
{
block *b;
if (!first) return;
for (b=first; ; b=b->next)
{
b -> current = & ( b -> data[0] );
if (b == last) break;
}
last = first;
}
/***********************************************************************/
private:
typedef struct block_st
{
Type *current, *last;
struct block_st *next;
Type data[1];
} block;
int block_size;
block *first;
block *last;
public:
struct iterator
{
block *scan_current_block;
Type *scan_current_data;
};
private:
block *scan_current_block;
Type *scan_current_data;
void (*error_function)(const char *);
};
/***********************************************************************/
/***********************************************************************/
/***********************************************************************/
template <class Type> class DBlock
{
public:
/* Constructor. Arguments are the block size and
(optionally) the pointer to the function which
will be called if allocation failed; the message
passed to this function is "Not enough memory!" */
DBlock(int size, void (*err_function)(const char *) = NULL) { first = NULL; first_free = NULL; block_size = size; error_function = err_function; }
/* Destructor. Deallocates all items added so far */
~DBlock() { while (first) { block *next = first -> next; delete[] ((char*)first); first = next; } }
/* Allocates one item */
Type *New()
{
block_item *item;
if (!first_free)
{
block *next = first;
first = (block *) new char [sizeof(block) + (block_size-1)*sizeof(block_item)];
if (!first) { if (error_function) (*error_function)("Not enough memory!"); exit(1); }
first_free = & (first -> data[0] );
for (item=first_free; item<first_free+block_size-1; item++)
item -> next_free = item + 1;
item -> next_free = NULL;
first -> next = next;
}
item = first_free;
first_free = item -> next_free;
return (Type *) item;
}
/* Deletes an item allocated previously */
void Delete(Type *t)
{
((block_item *) t) -> next_free = first_free;
first_free = (block_item *) t;
}
/***********************************************************************/
private:
typedef union block_item_st
{
Type t;
block_item_st *next_free;
} block_item;
typedef struct block_st
{
struct block_st *next;
block_item data[1];
} block;
int block_size;
block *first;
block_item *first_free;
void (*error_function)(const char *);
};
} // end namespace maxflow
#endif
|