This file is indexed.

/usr/include/linbox/matrix/sliced3/dense-matrix.h is in liblinbox-dev 1.4.2-5build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
/* -*- mode: C++; tab-width: 8; indent-tabs-mode: t; c-basic-offset: 8 -*- */
// vim:sts=8:sw=8:ts=8:noet:sr:cino=>s,f0,{0,g0,(0,\:0,t0,+0,=s
/* linbox/matrix/dense-matrix.h
 * Copyright (C) 2011 B. David Saunders,
 * See COPYING for license information
 *
 * evolved from dense-submatrix and blas-matrix by B. David Saunders <saunders@cis.udel.edu>, BSY
 */

/*! @file matrix/sliced3/dense-submatrix.h
 * @ingroup matrix
 * @brief Representation of a submatrix of a dense matrix, not resizeable.
 * This matrix type conforms to the \c LinBox::DenseMat interface.
 * \c LinBox::BlasMatrix is an example of DenseSubmatrix.
 */

#ifndef __LINBOX_dense_matrix_H
#define __LINBOX_dense_matrix_H

#include <utility>
#include "linbox/linbox-config.h"

//#include "linbox/util/debug.h"
//#include "linbox/matrix/matrix-domain.h"
#include "linbox/vector/subvector.h"
#include "submat-iterator.h"

namespace LinBox
{

	/** @brief to be used in standard matrix domain
	
	 * Matrix variable declaration, sizing, entry initialization may involve one to 3 steps.
	 * Matrix ops are container ops. (sizing, copying)  
	 * Mathematically meaningful operations are to be found only in an associated matrix domain
	 *
	 * A matrix may be allocated or not.  A matrix initialized by a submatrix() call is not allocated.
	 * When an allocated matrix goes out of scope or is reinitialized with init(), the memory is released 
	 * and all submatrices of it become invalid.
	 *
	 * Allocating:
	 * DenseMat A(2, 3); // allocation of mem for 6 entries at construction
	 * DenseMat B; B.init(10, 10); // default constr and subsequent allocation for 100 entries.
	 *
	 * Allocation of memory plus entry initialization:
	 * // a meaningful value of DenseMat::Entry x is set by a field or matrix domain.
	 * DenseMat A(10, 10, x); 
	 * DenseMat B: B.init(10, 10, x); 
	 * DenseMat C(A); // allocation at copy construction.  A could be a submatrix of another.
	 * A.read(istream)
	 *
	 * Nonallocation sizing:
	 * // assume D declared, A initialized, n = A.coldim().
	 * D.submatrix(A, 0, 1, 2, n-1); // D is 2 by n-1 in upper right of A.
	 *
	 * Entry initialization (and overwriting) in already sized matrices:
	 * A.setEntry(i, j, x);
	 * A = B; // A and B must have the same shape.

	 * Entry read access. OK on const matrices
	 * getEntry, write

	 * Under consideration:  Require A.clear() on an allocated matrix before any action that would abandon
	 * the allocated mem (init or submatrix).
	 \ingroup matrix
	 */
	template<class _Element>
	class DenseMat {
		typedef _Element Entry;
	public: // protected:  //TODO scope
		Entry *_rep; // matrix entries on the heap.
		bool _alloc; // iff _alloc, I am responsible for _rep allocation/deallocation.
		size_t _rows; 
		size_t _cols;
		size_t _stride; // stride from row to row.  Entries in a row are contiguous.

	public:
		size_t rowdim() const { return _rows; } 
		size_t coldim() const { return _cols; }

		Entry& getEntry(Entry& x, size_t i, size_t j) const { 
			linbox_check(i < _rows && j < _cols);
			return x = *(_rep + i*_stride + j); 
		}

		Entry& setEntry(size_t i, size_t j, const Entry& x ) { 
			//linbox_check((i < _rows && j < _cols));
			return *(_rep + i*_stride + j) = x; 
		}
		// no refEntry - not well supportable in some matrix domains.

		DenseMat() : _rep(NULL), _alloc(false), _rows(0), _cols(0), _stride(0) {}

		void init(size_t m = 0, size_t n = 0) {
			//std::cerr << m << " " << n << " <<<<<<" << std::endl;
			if (_alloc) delete _rep; // abandon any prior def
			if (m*n != 0) { 
				_rep = new Entry[m*n]; _alloc = true;
			} else { 
				_rep = NULL; _alloc = false; 
			}
			size(m, n);
		}

		void init(size_t m, size_t n, const Entry& filler) {
			if (_alloc) delete _rep; // abandon any prior def
			if (m*n != 0) { 
				_rep = new Entry[m*n]; _alloc = true;
				for (size_t i = 0; i < m*n; ++i) _rep[i] = filler;
			} else { 
				_rep = NULL; _alloc = false; 
			}
			size(m, n);
		}

		/* Copy construction makes this a completely distinct copy of A.  
		 * Entries of this are stored contiguously even if A is not contiguous (is a submatrix of another).
		 * 
		 * If memcpy is not valid for your entry type, specialize DenseMat for it.
		 */
		DenseMat(const DenseMat& A)
		: _rep(new Entry[A._rows*A._cols]), _alloc(true), _rows(A._rows), _cols(A._cols), _stride(A._cols) 
		{	
			//std::cout << "copy construction " << _rep << std::endl;
			//std::cout << "copy cons " << _rows << " " << _cols << std::endl;
			*this = A; // copy A's data into _rep
		}

		~DenseMat() {
			if (_alloc) delete _rep;
		}

		// For assignment, the matrices must have same size and not overlap in memory.
		// This restriction could be loosened...
		DenseMat& operator=(const DenseMat& B) {
			linbox_check(_rows == B._rows && _cols == B._cols);
			if (_cols == _stride && B._cols == B._stride) // both are contiguous
				memcpy(_rep, B._rep, sizeof(Entry)*_rows*_cols);
			else
				for (size_t i = 0; i < _rows; ++i) // copy row by row
					memcpy(_rep + i*_stride, B._rep + i*B._stride, sizeof(Entry)*_cols);
			return *this;	
		}
		
		/** Set this to be an m by n submatrix of A with upper left corner at i,j position of A.
		 * Requires i+m <= A.rowdim(), j+n <= A.coldim(). 
		 *
		 * For instance, B.submatrix(A, i, 0, 1, A.coldim()) makes B the i-th row of A.
		 */
		void submatrix(const DenseMat & A, size_t i, size_t j, size_t m, size_t n) {
			linbox_check(i+m <= A._rows && j+n <= A._cols);
			if (_alloc) delete _rep; // abandon any prior def
			_rep = A._rep + (i*A._stride + j);
			_alloc = false;
			_rows = m; _cols = n; _stride = A._stride;
		}

		/*  SLICED helper functions... maybe shouldn't be public */

		//  size a matrix w/o allocating memory
		void size(size_t m, size_t n){
			_rows = m; _cols = _stride = n;
		}

		template<class vp>
		int did_swapback(vp &swaps, size_t hot, size_t l, size_t r){
			for(size_t i=l; i<r; ++i){
				if(swaps[i].second == hot)
					return swaps[i].first;
			}
			return -1;
		}

		template<class vp>
		void flocs(vp & tos, vp & swaps){
			std::vector<size_t> pos;
			for(size_t i =0; i < coldim(); ++i)  pos.push_back(i);

			for(int i = coldim()-1; i>= 0; --i){
				//std::cerr << swaps[i] << std::endl;
				swap(pos[swaps[i].first], pos[swaps[i].second]);
			}

			for(size_t i = 0; i < coldim(); ++i){
				std::pair<size_t, size_t> p(i, pos[i]);
				tos.push_back(p);
			}
		}

		template<class vp>
		size_t final_loc(vp &swaps, size_t j){
			//  first check if we were swapped back prior to being reached
			int to = did_swapback(swaps, j, 0, j+1);
			if(to >= 0) return to;
			//  next check if we get swapped back from our immediate neightbor
			//size_t nbor = swaps[j].second;
			//to = did_swapback(swaps, nbor, j+1, nbor);
			//if(to >= 0) return to;
			//  bad luck, we are chained forward, so 
			size_t i = j;
			while(to < 0){
				size_t lc = swaps[i].first;
				size_t rc = swaps[i].second;
				to = did_swapback(swaps, rc, lc+1, rc+1);
				//std::cerr << j << ": " << to << "= ds(swps, " << rc << "," << lc+1 << "," << rc+1 << ")" << std::endl;

				i = rc;
				if(to < 0 && rc == swaps.size() - 1){
					to = swaps.size() - 1;
				}
			}
			return to;
		}

		void randomColPermutation() {
			typedef std::pair<size_t, size_t> pair;
			typedef std::vector<pair> vp;
			vp swaps;
			vp tos;
			vp tos2;
			//  create pairs
			for (size_t j = 0; j < coldim(); ++j){
				// Each iteration swap col j with a random col in range [j..n-1].
				int k = j + rand()%(coldim()-j);
				//std::cerr << j << "->" << k << std::endl;
				pair p(j,k);
				swaps.push_back(p);
				//for (size_t i = 0; i < rowdim(); ++i)
					//swap( _rep[i*_stride + j], _rep[i*_stride + k]);
			}
			/*
			//flocs(tos2, swaps);
			//  find each final location
			for(size_t j = 0; j < coldim(); ++j){
				size_t to = final_loc(swaps, j);
				pair p(j, to);
				if(p != tos2[j]){
					std::cerr << "HOUSTON: PROBLEM" << std::endl;
				}
				else{
					std::cout << "YAY ";
				}
				tos.push_back(p);
			}
				*/
			flocs(tos, swaps);
			//  tos is the correct mapping now permute
			Entry *perm_row = new Entry[coldim()];
			for(size_t i = 0; i < rowdim(); ++i){
				for(vp::iterator ti = tos.begin(); ti!= tos.end(); ++ti)
					perm_row[(*ti).second] = _rep[i*_stride + (*ti).first];
				memcpy(&(_rep[i*_stride]), perm_row, coldim()*sizeof(Entry));	
			}
			delete[] perm_row;
			
			//  CHECKING CODE
			/*
			std::cerr << "swaps: ";
			for(vp::iterator i = swaps.begin(); i!= swaps.end(); ++i){
				std::cerr << *i << " ";
			}
			std::cerr << std::endl;
			std::cerr << "tos: ";
			for(vp::iterator i = tos.begin(); i!= tos.end(); ++i){
				std::cerr << *i << " ";
			}
			std::cerr << std::endl;
			std::vector<int> orig;
			for(size_t i = 0; i < coldim(); ++i) orig.push_back((int)i);
			std::vector<int> out(orig);
			std::vector<int> out2(orig);
			for(vp::iterator i = swaps.begin(); i!= swaps.end(); ++i){
				std::swap(out[(*i).first], out[(*i).second]);
			}
			for(vp::iterator i = tos.begin(); i!= tos.end(); ++i){
				out2[(*i).second] = orig[(*i).first];
			}
			for(std::vector<int>::iterator i=out.begin(), i2=out2.begin(); i!=out.end(); ++i, ++i2){
				if(*i != *i2){
					std::cerr << "LOSER: ";
					std::cerr << *i << " v " << *i2 << std::endl;
				}
			}
			*/
		}

		void randomLowerTriangularColTransform() {
			for (size_t j = 0; j < coldim(); ++j){
				// Each iteration swap col j with a random col in range [j..n-1].
				//int l = 1, k = 0;
				//do { l *= RAND_MAX; k = k*RAND_MAX + rand(); } while (l < j);
				//k = k%j;
				int k = rand()%j;
				for (size_t i = 0; i < rowdim(); ++i)
					 _rep[i*_stride + j] += _rep[i*_stride + k];
			}
		}
		/*  Iterators */

		typedef SubMatIterator<_Element> RawIterator;
		typedef ConstSubMatIterator<_Element> ConstRawIterator;

		RawIterator rawBegin() { 
			return RawIterator(_rep, _cols, _stride); };
		RawIterator rawEnd() { 
			return RawIterator(_rep + _rows*_stride); }
		RawIterator rowBegin(size_t i) { 
			//return rawBegin() + i*_cols;
			return RawIterator(_rep+i*_stride, _cols, _stride);
		}
		RawIterator rowEnd(size_t i) { 
			return rowBegin(i + 1); 
		}
		/*
		RawIterator rowBegin(size_t i) { 
			return rawBegin() + i*_cols; }
		RawIterator rowEnd(size_t i) { 
			return rowBegin(i + 1); }
			*/

		ConstRawIterator rawBegin() const { 
			return ConstRawIterator(_rep, _cols, _stride); }
		ConstRawIterator rawEnd() const { 
			return ConstRawIterator(_rep + _rows*_stride); }
		ConstRawIterator rowBegin(size_t i) const { 
			return rawBegin() + i*_cols; }
		ConstRawIterator rowEnd(size_t i) const { 
			return rowBegin(i + 1); }

		typedef DenseMat<_Element>   Self_t;       //!< Self type

#if 0  // TODO factor out
		/** @name typedef'd Row Iterators.
		 *\brief
		 * The row iterator gives the rows of the
		 * matrix in ascending order. Dereferencing the iterator yields
		 * a row vector in dense format
		 * @{
		 */
		typedef Entry* RowIterator;
		typedef const Entry* ConstRowIterator;
		typedef Subvector<Entry*> Row;
		typedef Subvector<const Entry*> ConstRow;
		 //@} Row Iterators

		/** @name typedef'd Column Iterators.
		 *\brief
		 * The columns iterator gives the columns of the
		 * matrix in ascending order. Dereferencing the iterator yields
		 * a column vector in dense format
		 * @{
		 */
		typedef Subiterator<Entry> ColIterator;
		typedef Subiterator<const Entry> ConstColIterator;
		typedef Subvector<ColIterator>                   Col;
		typedef Subvector<ConstColIterator>                   ConstCol;
		//@} // Column Iterators
#endif

		template<typename _Tp1>
		struct rebind {
			typedef DenseMat<typename _Tp1::Element> other;
		};

		/** Read the matrix from an input stream.
		 * @param file Input stream from which to read
		 * @param field
		 */
		template<class Field>
		std::istream& read (std::istream &file, const Field& field);

		/** Write the matrix to an output stream.
		 * @param os Output stream to which to write
		 * @param field
		 * @param mapleFormat write in Maple(r) format ?
		 */
		template<class Field>
		std::ostream& write (std::ostream &os, const Field& field,
				     bool mapleFormat = false) const;

		/** Write the matrix to an output stream.
		 * This a raw version of \c write(os,F) (no field is given).
		 * @param os Output stream to which to write
		 * @param mapleFormat write in Maple(r) format ?
		 */
		std::ostream& write (std::ostream &os,
				     bool mapleFormat = false) const;

		/*  TODO factor out row/col iterator
		RowIterator rowBegin ();
		RowIterator rowEnd ();
		ConstRowIterator rowBegin () const;
		ConstRowIterator rowEnd () const;

		ColIterator colBegin ();
		ColIterator colEnd ();
		ConstColIterator colBegin () const;
		ConstColIterator colEnd () const;
		*/

};
	/*! Write a matrix to a stream.
	 * The C++ way using <code>operator<<</code>
	 * @param o output stream
	 * @param Mat matrix to write.
	 */
	template<class T>
	std::ostream& operator<< (std::ostream & o, const DenseMat<T> & Mat)
	{
		return Mat.write(o);
	}

	/*! @internal
	 * @brief MatrixTraits
	 */
	/*  necessary?
	template <class Element>
	struct MatrixTraits< DenseMat<Element> > {
		typedef DenseMat<Element> MatrixType;
		typedef typename MatrixCategories::RowColMatrixTag MatrixCategory;
	};
	*/

	template <class _Element>
	template <class Field>
	std::istream& DenseMat<_Element>::read (std::istream &file, const Field& field)
	{
		RawIterator p;

		for (p = rawBegin (); p != rawEnd (); ++p) {
			// each entry is seperated by one space.
			file.ignore (1);
			field.read (file, *p);
		}

		return file;
	}

	template <class _Element>
	template <class Field>
	std::ostream &DenseMat<_Element>::write (std::ostream &os, const Field& field,
						       bool mapleFormat) const
	{
		return os;
	}
/*  TODO factor out RowIterator
		ConstRowIterator p;

		// integer c;
		//int wid;

		// field.cardinality (c);
		//wid = (int) ceil (log ((double) c) / M_LN10); //BB : not used !

		typename ConstRow::const_iterator pe;

		if (mapleFormat) os << "[";

		for (p = rowBegin (); p != rowEnd (); ++p) {
			if (mapleFormat && (p != rowBegin()))
				os << ',';
			if (mapleFormat) os << "[";

			for (pe = p->begin (); pe != p->end (); ++pe) {
				if (mapleFormat && (pe != p->begin())) os << ',';
				// matrix base does not provide this field(), maybe should?
				//_M.field ().write (os, *pe);
				//os << *pe;
				//fixed by using extra field

				field.write (os, *pe);
				os << " ";
			}

			if (!mapleFormat)
				os << std::endl;
			else os << ']';
		}

		if (mapleFormat) os << ']';
		return os;
	}
	*/

	template <class _Element>
	std::ostream &DenseMat<_Element>::write (std::ostream &os, bool mapleFormat) const
	{
		return os;
	}
	/*
		ConstRowIterator p;



		typename ConstRow::const_iterator pe;

		if (mapleFormat) os << "[";

		for (p = rowBegin (); p != rowEnd (); ++p) {
			if (mapleFormat && (p != rowBegin()))
				os << ',';
			if (mapleFormat) os << "[";

			for (pe = p->begin (); pe != p->end (); ++pe) {
				if (mapleFormat && (pe != p->begin())) os << ',';

				os << *pe;
				os << " ";
			}

			if (!mapleFormat)
				os << std::endl;
			else os << ']';
		}

		if (mapleFormat) os << ']';
		return os;
	}
	*/

} // namespace LinBox

#endif // __LINBOX_dense_matrix_H