/usr/include/lemon/opt2_tsp.h is in liblemon-dev 1.3.1+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 | /* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2013
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_OPT2_TSP_H
#define LEMON_OPT2_TSP_H
/// \ingroup tsp
/// \file
/// \brief 2-opt algorithm for symmetric TSP.
#include <vector>
#include <lemon/full_graph.h>
namespace lemon {
/// \ingroup tsp
///
/// \brief 2-opt algorithm for symmetric TSP.
///
/// Opt2Tsp implements the 2-opt heuristic for solving
/// symmetric \ref tsp "TSP".
///
/// This algorithm starts with an initial tour and iteratively improves it.
/// At each step, it removes two edges and the reconnects the created two
/// paths in the other way if the resulting tour is shorter.
/// The algorithm finishes when no such 2-opt move can be applied, and so
/// the tour is 2-optimal.
///
/// If no starting tour is given to the \ref run() function, then the
/// algorithm uses the node sequence determined by the node IDs.
/// Oherwise, it starts with the given tour.
///
/// This is a rather slow but effective method.
/// Its typical usage is the improvement of the result of a fast tour
/// construction heuristic (e.g. the InsertionTsp algorithm).
///
/// \tparam CM Type of the cost map.
template <typename CM>
class Opt2Tsp
{
public:
/// Type of the cost map
typedef CM CostMap;
/// Type of the edge costs
typedef typename CM::Value Cost;
private:
GRAPH_TYPEDEFS(FullGraph);
const FullGraph &_gr;
const CostMap &_cost;
Cost _sum;
std::vector<int> _plist;
std::vector<Node> _path;
public:
/// \brief Constructor
///
/// Constructor.
/// \param gr The \ref FullGraph "full graph" the algorithm runs on.
/// \param cost The cost map.
Opt2Tsp(const FullGraph &gr, const CostMap &cost)
: _gr(gr), _cost(cost) {}
/// \name Execution Control
/// @{
/// \brief Runs the algorithm from scratch.
///
/// This function runs the algorithm starting from the tour that is
/// determined by the node ID sequence.
///
/// \return The total cost of the found tour.
Cost run() {
_path.clear();
if (_gr.nodeNum() == 0) return _sum = 0;
else if (_gr.nodeNum() == 1) {
_path.push_back(_gr(0));
return _sum = 0;
}
else if (_gr.nodeNum() == 2) {
_path.push_back(_gr(0));
_path.push_back(_gr(1));
return _sum = 2 * _cost[_gr.edge(_gr(0), _gr(1))];
}
_plist.resize(2*_gr.nodeNum());
for (int i = 1; i < _gr.nodeNum()-1; ++i) {
_plist[2*i] = i-1;
_plist[2*i+1] = i+1;
}
_plist[0] = _gr.nodeNum()-1;
_plist[1] = 1;
_plist[2*_gr.nodeNum()-2] = _gr.nodeNum()-2;
_plist[2*_gr.nodeNum()-1] = 0;
return start();
}
/// \brief Runs the algorithm starting from the given tour.
///
/// This function runs the algorithm starting from the given tour.
///
/// \param tour The tour as a path structure. It must be a
/// \ref checkPath() "valid path" containing excactly n arcs.
///
/// \return The total cost of the found tour.
template <typename Path>
Cost run(const Path& tour) {
_path.clear();
if (_gr.nodeNum() == 0) return _sum = 0;
else if (_gr.nodeNum() == 1) {
_path.push_back(_gr(0));
return _sum = 0;
}
else if (_gr.nodeNum() == 2) {
_path.push_back(_gr(0));
_path.push_back(_gr(1));
return _sum = 2 * _cost[_gr.edge(_gr(0), _gr(1))];
}
_plist.resize(2*_gr.nodeNum());
typename Path::ArcIt it(tour);
int first = _gr.id(_gr.source(it)),
prev = first,
curr = _gr.id(_gr.target(it)),
next = -1;
_plist[2*first+1] = curr;
for (++it; it != INVALID; ++it) {
next = _gr.id(_gr.target(it));
_plist[2*curr] = prev;
_plist[2*curr+1] = next;
prev = curr;
curr = next;
}
_plist[2*first] = prev;
return start();
}
/// \brief Runs the algorithm starting from the given tour.
///
/// This function runs the algorithm starting from the given tour
/// (node sequence).
///
/// \param tour A vector that stores all <tt>Node</tt>s of the graph
/// in the desired order.
///
/// \return The total cost of the found tour.
Cost run(const std::vector<Node>& tour) {
_path.clear();
if (_gr.nodeNum() == 0) return _sum = 0;
else if (_gr.nodeNum() == 1) {
_path.push_back(_gr(0));
return _sum = 0;
}
else if (_gr.nodeNum() == 2) {
_path.push_back(_gr(0));
_path.push_back(_gr(1));
return _sum = 2 * _cost[_gr.edge(_gr(0), _gr(1))];
}
_plist.resize(2*_gr.nodeNum());
typename std::vector<Node>::const_iterator it = tour.begin();
int first = _gr.id(*it),
prev = first,
curr = _gr.id(*(++it)),
next = -1;
_plist[2*first+1] = curr;
for (++it; it != tour.end(); ++it) {
next = _gr.id(*it);
_plist[2*curr] = prev;
_plist[2*curr+1] = next;
prev = curr;
curr = next;
}
_plist[2*first] = curr;
_plist[2*curr] = prev;
_plist[2*curr+1] = first;
return start();
}
/// @}
/// \name Query Functions
/// @{
/// \brief The total cost of the found tour.
///
/// This function returns the total cost of the found tour.
///
/// \pre run() must be called before using this function.
Cost tourCost() const {
return _sum;
}
/// \brief Returns a const reference to the node sequence of the
/// found tour.
///
/// This function returns a const reference to a vector
/// that stores the node sequence of the found tour.
///
/// \pre run() must be called before using this function.
const std::vector<Node>& tourNodes() const {
return _path;
}
/// \brief Gives back the node sequence of the found tour.
///
/// This function copies the node sequence of the found tour into
/// an STL container through the given output iterator. The
/// <tt>value_type</tt> of the container must be <tt>FullGraph::Node</tt>.
/// For example,
/// \code
/// std::vector<FullGraph::Node> nodes(countNodes(graph));
/// tsp.tourNodes(nodes.begin());
/// \endcode
/// or
/// \code
/// std::list<FullGraph::Node> nodes;
/// tsp.tourNodes(std::back_inserter(nodes));
/// \endcode
///
/// \pre run() must be called before using this function.
template <typename Iterator>
void tourNodes(Iterator out) const {
std::copy(_path.begin(), _path.end(), out);
}
/// \brief Gives back the found tour as a path.
///
/// This function copies the found tour as a list of arcs/edges into
/// the given \ref lemon::concepts::Path "path structure".
///
/// \pre run() must be called before using this function.
template <typename Path>
void tour(Path &path) const {
path.clear();
for (int i = 0; i < int(_path.size()) - 1; ++i) {
path.addBack(_gr.arc(_path[i], _path[i+1]));
}
if (int(_path.size()) >= 2) {
path.addBack(_gr.arc(_path.back(), _path.front()));
}
}
/// @}
private:
// Iterator class for the linked list storage of the tour
class PathListIt {
public:
PathListIt(const std::vector<int> &pl, int i=0)
: plist(&pl), act(i), last(pl[2*act]) {}
PathListIt(const std::vector<int> &pl, int i, int l)
: plist(&pl), act(i), last(l) {}
int nextIndex() const {
return (*plist)[2*act] == last ? 2*act+1 : 2*act;
}
int prevIndex() const {
return (*plist)[2*act] == last ? 2*act : 2*act+1;
}
int next() const {
int x = (*plist)[2*act];
return x == last ? (*plist)[2*act+1] : x;
}
int prev() const {
return last;
}
PathListIt& operator++() {
int tmp = act;
act = next();
last = tmp;
return *this;
}
operator int() const {
return act;
}
private:
const std::vector<int> *plist;
int act;
int last;
};
// Checks and applies 2-opt move (if it improves the tour)
bool checkOpt2(const PathListIt& i, const PathListIt& j) {
Node u = _gr.nodeFromId(i),
un = _gr.nodeFromId(i.next()),
v = _gr.nodeFromId(j),
vn = _gr.nodeFromId(j.next());
if (_cost[_gr.edge(u, un)] + _cost[_gr.edge(v, vn)] >
_cost[_gr.edge(u, v)] + _cost[_gr.edge(un, vn)])
{
_plist[PathListIt(_plist, i.next(), i).prevIndex()] = j.next();
_plist[PathListIt(_plist, j.next(), j).prevIndex()] = i.next();
_plist[i.nextIndex()] = j;
_plist[j.nextIndex()] = i;
return true;
}
return false;
}
// Executes the algorithm from the initial tour
Cost start() {
restart_search:
for (PathListIt i(_plist); true; ++i) {
PathListIt j = i;
if (++j == 0 || ++j == 0) break;
for (; j != 0 && j != i.prev(); ++j) {
if (checkOpt2(i, j))
goto restart_search;
}
}
PathListIt i(_plist);
_path.push_back(_gr.nodeFromId(i));
for (++i; i != 0; ++i)
_path.push_back(_gr.nodeFromId(i));
_sum = _cost[_gr.edge(_path.back(), _path.front())];
for (int i = 0; i < int(_path.size())-1; ++i) {
_sum += _cost[_gr.edge(_path[i], _path[i+1])];
}
return _sum;
}
};
}; // namespace lemon
#endif
|