This file is indexed.

/usr/include/lemon/kruskal.h is in liblemon-dev 1.3.1+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
/* -*- mode: C++; indent-tabs-mode: nil; -*-
 *
 * This file is a part of LEMON, a generic C++ optimization library.
 *
 * Copyright (C) 2003-2013
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
 *
 * Permission to use, modify and distribute this software is granted
 * provided that this copyright notice appears in all copies. For
 * precise terms see the accompanying LICENSE file.
 *
 * This software is provided "AS IS" with no warranty of any kind,
 * express or implied, and with no claim as to its suitability for any
 * purpose.
 *
 */

#ifndef LEMON_KRUSKAL_H
#define LEMON_KRUSKAL_H

#include <algorithm>
#include <vector>
#include <lemon/unionfind.h>
#include <lemon/maps.h>

#include <lemon/core.h>
#include <lemon/bits/traits.h>

///\ingroup spantree
///\file
///\brief Kruskal's algorithm to compute a minimum cost spanning tree

namespace lemon {

  namespace _kruskal_bits {

    // Kruskal for directed graphs.

    template <typename Digraph, typename In, typename Out>
    typename disable_if<lemon::UndirectedTagIndicator<Digraph>,
                       typename In::value_type::second_type >::type
    kruskal(const Digraph& digraph, const In& in, Out& out,dummy<0> = 0) {
      typedef typename In::value_type::second_type Value;
      typedef typename Digraph::template NodeMap<int> IndexMap;
      typedef typename Digraph::Node Node;

      IndexMap index(digraph);
      UnionFind<IndexMap> uf(index);
      for (typename Digraph::NodeIt it(digraph); it != INVALID; ++it) {
        uf.insert(it);
      }

      Value tree_value = 0;
      for (typename In::const_iterator it = in.begin(); it != in.end(); ++it) {
        if (uf.join(digraph.target(it->first),digraph.source(it->first))) {
          out.set(it->first, true);
          tree_value += it->second;
        }
        else {
          out.set(it->first, false);
        }
      }
      return tree_value;
    }

    // Kruskal for undirected graphs.

    template <typename Graph, typename In, typename Out>
    typename enable_if<lemon::UndirectedTagIndicator<Graph>,
                       typename In::value_type::second_type >::type
    kruskal(const Graph& graph, const In& in, Out& out,dummy<1> = 1) {
      typedef typename In::value_type::second_type Value;
      typedef typename Graph::template NodeMap<int> IndexMap;
      typedef typename Graph::Node Node;

      IndexMap index(graph);
      UnionFind<IndexMap> uf(index);
      for (typename Graph::NodeIt it(graph); it != INVALID; ++it) {
        uf.insert(it);
      }

      Value tree_value = 0;
      for (typename In::const_iterator it = in.begin(); it != in.end(); ++it) {
        if (uf.join(graph.u(it->first),graph.v(it->first))) {
          out.set(it->first, true);
          tree_value += it->second;
        }
        else {
          out.set(it->first, false);
        }
      }
      return tree_value;
    }


    template <typename Sequence>
    struct PairComp {
      typedef typename Sequence::value_type Value;
      bool operator()(const Value& left, const Value& right) {
        return left.second < right.second;
      }
    };

    template <typename In, typename Enable = void>
    struct SequenceInputIndicator {
      static const bool value = false;
    };

    template <typename In>
    struct SequenceInputIndicator<In,
      typename exists<typename In::value_type::first_type>::type> {
      static const bool value = true;
    };

    template <typename In, typename Enable = void>
    struct MapInputIndicator {
      static const bool value = false;
    };

    template <typename In>
    struct MapInputIndicator<In,
      typename exists<typename In::Value>::type> {
      static const bool value = true;
    };

    template <typename In, typename Enable = void>
    struct SequenceOutputIndicator {
      static const bool value = false;
    };

    template <typename Out>
    struct SequenceOutputIndicator<Out,
      typename exists<typename Out::value_type>::type> {
      static const bool value = true;
    };

    template <typename Out, typename Enable = void>
    struct MapOutputIndicator {
      static const bool value = false;
    };

    template <typename Out>
    struct MapOutputIndicator<Out,
      typename exists<typename Out::Value>::type> {
      static const bool value = true;
    };

    template <typename In, typename InEnable = void>
    struct KruskalValueSelector {};

    template <typename In>
    struct KruskalValueSelector<In,
      typename enable_if<SequenceInputIndicator<In>, void>::type>
    {
      typedef typename In::value_type::second_type Value;
    };

    template <typename In>
    struct KruskalValueSelector<In,
      typename enable_if<MapInputIndicator<In>, void>::type>
    {
      typedef typename In::Value Value;
    };

    template <typename Graph, typename In, typename Out,
              typename InEnable = void>
    struct KruskalInputSelector {};

    template <typename Graph, typename In, typename Out,
              typename InEnable = void>
    struct KruskalOutputSelector {};

    template <typename Graph, typename In, typename Out>
    struct KruskalInputSelector<Graph, In, Out,
      typename enable_if<SequenceInputIndicator<In>, void>::type >
    {
      typedef typename In::value_type::second_type Value;

      static Value kruskal(const Graph& graph, const In& in, Out& out) {
        return KruskalOutputSelector<Graph, In, Out>::
          kruskal(graph, in, out);
      }

    };

    template <typename Graph, typename In, typename Out>
    struct KruskalInputSelector<Graph, In, Out,
      typename enable_if<MapInputIndicator<In>, void>::type >
    {
      typedef typename In::Value Value;
      static Value kruskal(const Graph& graph, const In& in, Out& out) {
        typedef typename In::Key MapArc;
        typedef typename In::Value Value;
        typedef typename ItemSetTraits<Graph, MapArc>::ItemIt MapArcIt;
        typedef std::vector<std::pair<MapArc, Value> > Sequence;
        Sequence seq;

        for (MapArcIt it(graph); it != INVALID; ++it) {
          seq.push_back(std::make_pair(it, in[it]));
        }

        std::sort(seq.begin(), seq.end(), PairComp<Sequence>());
        return KruskalOutputSelector<Graph, Sequence, Out>::
          kruskal(graph, seq, out);
      }
    };

    template <typename T>
    struct RemoveConst {
      typedef T type;
    };

    template <typename T>
    struct RemoveConst<const T> {
      typedef T type;
    };

    template <typename Graph, typename In, typename Out>
    struct KruskalOutputSelector<Graph, In, Out,
      typename enable_if<SequenceOutputIndicator<Out>, void>::type >
    {
      typedef typename In::value_type::second_type Value;

      static Value kruskal(const Graph& graph, const In& in, Out& out) {
        typedef LoggerBoolMap<typename RemoveConst<Out>::type> Map;
        Map map(out);
        return _kruskal_bits::kruskal(graph, in, map);
      }

    };

    template <typename Graph, typename In, typename Out>
    struct KruskalOutputSelector<Graph, In, Out,
      typename enable_if<MapOutputIndicator<Out>, void>::type >
    {
      typedef typename In::value_type::second_type Value;

      static Value kruskal(const Graph& graph, const In& in, Out& out) {
        return _kruskal_bits::kruskal(graph, in, out);
      }
    };

  }

  /// \ingroup spantree
  ///
  /// \brief Kruskal's algorithm for finding a minimum cost spanning tree of
  /// a graph.
  ///
  /// This function runs Kruskal's algorithm to find a minimum cost
  /// spanning tree of a graph.
  /// Due to some C++ hacking, it accepts various input and output types.
  ///
  /// \param g The graph the algorithm runs on.
  /// It can be either \ref concepts::Digraph "directed" or
  /// \ref concepts::Graph "undirected".
  /// If the graph is directed, the algorithm consider it to be
  /// undirected by disregarding the direction of the arcs.
  ///
  /// \param in This object is used to describe the arc/edge costs.
  /// It can be one of the following choices.
  /// - An STL compatible 'Forward Container' with
  /// <tt>std::pair<GR::Arc,C></tt> or
  /// <tt>std::pair<GR::Edge,C></tt> as its <tt>value_type</tt>, where
  /// \c C is the type of the costs. The pairs indicates the arcs/edges
  /// along with the assigned cost. <em>They must be in a
  /// cost-ascending order.</em>
  /// - Any readable arc/edge map. The values of the map indicate the
  /// arc/edge costs.
  ///
  /// \retval out Here we also have a choice.
  /// - It can be a writable arc/edge map with \c bool value type. After
  /// running the algorithm it will contain the found minimum cost spanning
  /// tree: the value of an arc/edge will be set to \c true if it belongs
  /// to the tree, otherwise it will be set to \c false. The value of
  /// each arc/edge will be set exactly once.
  /// - It can also be an iteraror of an STL Container with
  /// <tt>GR::Arc</tt> or <tt>GR::Edge</tt> as its
  /// <tt>value_type</tt>.  The algorithm copies the elements of the
  /// found tree into this sequence.  For example, if we know that the
  /// spanning tree of the graph \c g has say 53 arcs, then we can
  /// put its arcs into an STL vector \c tree with a code like this.
  ///\code
  /// std::vector<Arc> tree(53);
  /// kruskal(g,cost,tree.begin());
  ///\endcode
  /// Or if we don't know in advance the size of the tree, we can
  /// write this.
  ///\code
  /// std::vector<Arc> tree;
  /// kruskal(g,cost,std::back_inserter(tree));
  ///\endcode
  ///
  /// \return The total cost of the found spanning tree.
  ///
  /// \note If the input graph is not (weakly) connected, a spanning
  /// forest is calculated instead of a spanning tree.

#ifdef DOXYGEN
  template <typename Graph, typename In, typename Out>
  Value kruskal(const Graph& g, const In& in, Out& out)
#else
  template <class Graph, class In, class Out>
  inline typename _kruskal_bits::KruskalValueSelector<In>::Value
  kruskal(const Graph& graph, const In& in, Out& out)
#endif
  {
    return _kruskal_bits::KruskalInputSelector<Graph, In, Out>::
      kruskal(graph, in, out);
  }


  template <class Graph, class In, class Out>
  inline typename _kruskal_bits::KruskalValueSelector<In>::Value
  kruskal(const Graph& graph, const In& in, const Out& out)
  {
    return _kruskal_bits::KruskalInputSelector<Graph, In, const Out>::
      kruskal(graph, in, out);
  }

} //namespace lemon

#endif //LEMON_KRUSKAL_H