/usr/include/lemon/kruskal.h is in liblemon-dev 1.3.1+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 | /* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2013
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_KRUSKAL_H
#define LEMON_KRUSKAL_H
#include <algorithm>
#include <vector>
#include <lemon/unionfind.h>
#include <lemon/maps.h>
#include <lemon/core.h>
#include <lemon/bits/traits.h>
///\ingroup spantree
///\file
///\brief Kruskal's algorithm to compute a minimum cost spanning tree
namespace lemon {
namespace _kruskal_bits {
// Kruskal for directed graphs.
template <typename Digraph, typename In, typename Out>
typename disable_if<lemon::UndirectedTagIndicator<Digraph>,
typename In::value_type::second_type >::type
kruskal(const Digraph& digraph, const In& in, Out& out,dummy<0> = 0) {
typedef typename In::value_type::second_type Value;
typedef typename Digraph::template NodeMap<int> IndexMap;
typedef typename Digraph::Node Node;
IndexMap index(digraph);
UnionFind<IndexMap> uf(index);
for (typename Digraph::NodeIt it(digraph); it != INVALID; ++it) {
uf.insert(it);
}
Value tree_value = 0;
for (typename In::const_iterator it = in.begin(); it != in.end(); ++it) {
if (uf.join(digraph.target(it->first),digraph.source(it->first))) {
out.set(it->first, true);
tree_value += it->second;
}
else {
out.set(it->first, false);
}
}
return tree_value;
}
// Kruskal for undirected graphs.
template <typename Graph, typename In, typename Out>
typename enable_if<lemon::UndirectedTagIndicator<Graph>,
typename In::value_type::second_type >::type
kruskal(const Graph& graph, const In& in, Out& out,dummy<1> = 1) {
typedef typename In::value_type::second_type Value;
typedef typename Graph::template NodeMap<int> IndexMap;
typedef typename Graph::Node Node;
IndexMap index(graph);
UnionFind<IndexMap> uf(index);
for (typename Graph::NodeIt it(graph); it != INVALID; ++it) {
uf.insert(it);
}
Value tree_value = 0;
for (typename In::const_iterator it = in.begin(); it != in.end(); ++it) {
if (uf.join(graph.u(it->first),graph.v(it->first))) {
out.set(it->first, true);
tree_value += it->second;
}
else {
out.set(it->first, false);
}
}
return tree_value;
}
template <typename Sequence>
struct PairComp {
typedef typename Sequence::value_type Value;
bool operator()(const Value& left, const Value& right) {
return left.second < right.second;
}
};
template <typename In, typename Enable = void>
struct SequenceInputIndicator {
static const bool value = false;
};
template <typename In>
struct SequenceInputIndicator<In,
typename exists<typename In::value_type::first_type>::type> {
static const bool value = true;
};
template <typename In, typename Enable = void>
struct MapInputIndicator {
static const bool value = false;
};
template <typename In>
struct MapInputIndicator<In,
typename exists<typename In::Value>::type> {
static const bool value = true;
};
template <typename In, typename Enable = void>
struct SequenceOutputIndicator {
static const bool value = false;
};
template <typename Out>
struct SequenceOutputIndicator<Out,
typename exists<typename Out::value_type>::type> {
static const bool value = true;
};
template <typename Out, typename Enable = void>
struct MapOutputIndicator {
static const bool value = false;
};
template <typename Out>
struct MapOutputIndicator<Out,
typename exists<typename Out::Value>::type> {
static const bool value = true;
};
template <typename In, typename InEnable = void>
struct KruskalValueSelector {};
template <typename In>
struct KruskalValueSelector<In,
typename enable_if<SequenceInputIndicator<In>, void>::type>
{
typedef typename In::value_type::second_type Value;
};
template <typename In>
struct KruskalValueSelector<In,
typename enable_if<MapInputIndicator<In>, void>::type>
{
typedef typename In::Value Value;
};
template <typename Graph, typename In, typename Out,
typename InEnable = void>
struct KruskalInputSelector {};
template <typename Graph, typename In, typename Out,
typename InEnable = void>
struct KruskalOutputSelector {};
template <typename Graph, typename In, typename Out>
struct KruskalInputSelector<Graph, In, Out,
typename enable_if<SequenceInputIndicator<In>, void>::type >
{
typedef typename In::value_type::second_type Value;
static Value kruskal(const Graph& graph, const In& in, Out& out) {
return KruskalOutputSelector<Graph, In, Out>::
kruskal(graph, in, out);
}
};
template <typename Graph, typename In, typename Out>
struct KruskalInputSelector<Graph, In, Out,
typename enable_if<MapInputIndicator<In>, void>::type >
{
typedef typename In::Value Value;
static Value kruskal(const Graph& graph, const In& in, Out& out) {
typedef typename In::Key MapArc;
typedef typename In::Value Value;
typedef typename ItemSetTraits<Graph, MapArc>::ItemIt MapArcIt;
typedef std::vector<std::pair<MapArc, Value> > Sequence;
Sequence seq;
for (MapArcIt it(graph); it != INVALID; ++it) {
seq.push_back(std::make_pair(it, in[it]));
}
std::sort(seq.begin(), seq.end(), PairComp<Sequence>());
return KruskalOutputSelector<Graph, Sequence, Out>::
kruskal(graph, seq, out);
}
};
template <typename T>
struct RemoveConst {
typedef T type;
};
template <typename T>
struct RemoveConst<const T> {
typedef T type;
};
template <typename Graph, typename In, typename Out>
struct KruskalOutputSelector<Graph, In, Out,
typename enable_if<SequenceOutputIndicator<Out>, void>::type >
{
typedef typename In::value_type::second_type Value;
static Value kruskal(const Graph& graph, const In& in, Out& out) {
typedef LoggerBoolMap<typename RemoveConst<Out>::type> Map;
Map map(out);
return _kruskal_bits::kruskal(graph, in, map);
}
};
template <typename Graph, typename In, typename Out>
struct KruskalOutputSelector<Graph, In, Out,
typename enable_if<MapOutputIndicator<Out>, void>::type >
{
typedef typename In::value_type::second_type Value;
static Value kruskal(const Graph& graph, const In& in, Out& out) {
return _kruskal_bits::kruskal(graph, in, out);
}
};
}
/// \ingroup spantree
///
/// \brief Kruskal's algorithm for finding a minimum cost spanning tree of
/// a graph.
///
/// This function runs Kruskal's algorithm to find a minimum cost
/// spanning tree of a graph.
/// Due to some C++ hacking, it accepts various input and output types.
///
/// \param g The graph the algorithm runs on.
/// It can be either \ref concepts::Digraph "directed" or
/// \ref concepts::Graph "undirected".
/// If the graph is directed, the algorithm consider it to be
/// undirected by disregarding the direction of the arcs.
///
/// \param in This object is used to describe the arc/edge costs.
/// It can be one of the following choices.
/// - An STL compatible 'Forward Container' with
/// <tt>std::pair<GR::Arc,C></tt> or
/// <tt>std::pair<GR::Edge,C></tt> as its <tt>value_type</tt>, where
/// \c C is the type of the costs. The pairs indicates the arcs/edges
/// along with the assigned cost. <em>They must be in a
/// cost-ascending order.</em>
/// - Any readable arc/edge map. The values of the map indicate the
/// arc/edge costs.
///
/// \retval out Here we also have a choice.
/// - It can be a writable arc/edge map with \c bool value type. After
/// running the algorithm it will contain the found minimum cost spanning
/// tree: the value of an arc/edge will be set to \c true if it belongs
/// to the tree, otherwise it will be set to \c false. The value of
/// each arc/edge will be set exactly once.
/// - It can also be an iteraror of an STL Container with
/// <tt>GR::Arc</tt> or <tt>GR::Edge</tt> as its
/// <tt>value_type</tt>. The algorithm copies the elements of the
/// found tree into this sequence. For example, if we know that the
/// spanning tree of the graph \c g has say 53 arcs, then we can
/// put its arcs into an STL vector \c tree with a code like this.
///\code
/// std::vector<Arc> tree(53);
/// kruskal(g,cost,tree.begin());
///\endcode
/// Or if we don't know in advance the size of the tree, we can
/// write this.
///\code
/// std::vector<Arc> tree;
/// kruskal(g,cost,std::back_inserter(tree));
///\endcode
///
/// \return The total cost of the found spanning tree.
///
/// \note If the input graph is not (weakly) connected, a spanning
/// forest is calculated instead of a spanning tree.
#ifdef DOXYGEN
template <typename Graph, typename In, typename Out>
Value kruskal(const Graph& g, const In& in, Out& out)
#else
template <class Graph, class In, class Out>
inline typename _kruskal_bits::KruskalValueSelector<In>::Value
kruskal(const Graph& graph, const In& in, Out& out)
#endif
{
return _kruskal_bits::KruskalInputSelector<Graph, In, Out>::
kruskal(graph, in, out);
}
template <class Graph, class In, class Out>
inline typename _kruskal_bits::KruskalValueSelector<In>::Value
kruskal(const Graph& graph, const In& in, const Out& out)
{
return _kruskal_bits::KruskalInputSelector<Graph, In, const Out>::
kruskal(graph, in, out);
}
} //namespace lemon
#endif //LEMON_KRUSKAL_H
|