/usr/include/lemon/full_graph.h is in liblemon-dev 1.3.1+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 | /* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2013
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_FULL_GRAPH_H
#define LEMON_FULL_GRAPH_H
#include <lemon/core.h>
#include <lemon/bits/graph_extender.h>
///\ingroup graphs
///\file
///\brief FullDigraph and FullGraph classes.
namespace lemon {
class FullDigraphBase {
public:
typedef FullDigraphBase Digraph;
class Node;
class Arc;
protected:
int _node_num;
int _arc_num;
FullDigraphBase() {}
void construct(int n) { _node_num = n; _arc_num = n * n; }
public:
typedef True NodeNumTag;
typedef True ArcNumTag;
Node operator()(int ix) const { return Node(ix); }
static int index(const Node& node) { return node._id; }
Arc arc(const Node& s, const Node& t) const {
return Arc(s._id * _node_num + t._id);
}
int nodeNum() const { return _node_num; }
int arcNum() const { return _arc_num; }
int maxNodeId() const { return _node_num - 1; }
int maxArcId() const { return _arc_num - 1; }
Node source(Arc arc) const { return arc._id / _node_num; }
Node target(Arc arc) const { return arc._id % _node_num; }
static int id(Node node) { return node._id; }
static int id(Arc arc) { return arc._id; }
static Node nodeFromId(int id) { return Node(id);}
static Arc arcFromId(int id) { return Arc(id);}
typedef True FindArcTag;
Arc findArc(Node s, Node t, Arc prev = INVALID) const {
return prev == INVALID ? arc(s, t) : INVALID;
}
class Node {
friend class FullDigraphBase;
protected:
int _id;
Node(int id) : _id(id) {}
public:
Node() {}
Node (Invalid) : _id(-1) {}
bool operator==(const Node node) const {return _id == node._id;}
bool operator!=(const Node node) const {return _id != node._id;}
bool operator<(const Node node) const {return _id < node._id;}
};
class Arc {
friend class FullDigraphBase;
protected:
int _id; // _node_num * source + target;
Arc(int id) : _id(id) {}
public:
Arc() { }
Arc (Invalid) { _id = -1; }
bool operator==(const Arc arc) const {return _id == arc._id;}
bool operator!=(const Arc arc) const {return _id != arc._id;}
bool operator<(const Arc arc) const {return _id < arc._id;}
};
void first(Node& node) const {
node._id = _node_num - 1;
}
static void next(Node& node) {
--node._id;
}
void first(Arc& arc) const {
arc._id = _arc_num - 1;
}
static void next(Arc& arc) {
--arc._id;
}
void firstOut(Arc& arc, const Node& node) const {
arc._id = (node._id + 1) * _node_num - 1;
}
void nextOut(Arc& arc) const {
if (arc._id % _node_num == 0) arc._id = 0;
--arc._id;
}
void firstIn(Arc& arc, const Node& node) const {
arc._id = _arc_num + node._id - _node_num;
}
void nextIn(Arc& arc) const {
arc._id -= _node_num;
if (arc._id < 0) arc._id = -1;
}
};
typedef DigraphExtender<FullDigraphBase> ExtendedFullDigraphBase;
/// \ingroup graphs
///
/// \brief A directed full graph class.
///
/// FullDigraph is a simple and fast implmenetation of directed full
/// (complete) graphs. It contains an arc from each node to each node
/// (including a loop for each node), therefore the number of arcs
/// is the square of the number of nodes.
/// This class is completely static and it needs constant memory space.
/// Thus you can neither add nor delete nodes or arcs, however
/// the structure can be resized using resize().
///
/// This type fully conforms to the \ref concepts::Digraph "Digraph concept".
/// Most of its member functions and nested classes are documented
/// only in the concept class.
///
/// This class provides constant time counting for nodes and arcs.
///
/// \note FullDigraph and FullGraph classes are very similar,
/// but there are two differences. While this class conforms only
/// to the \ref concepts::Digraph "Digraph" concept, FullGraph
/// conforms to the \ref concepts::Graph "Graph" concept,
/// moreover FullGraph does not contain a loop for each
/// node as this class does.
///
/// \sa FullGraph
class FullDigraph : public ExtendedFullDigraphBase {
typedef ExtendedFullDigraphBase Parent;
public:
/// \brief Default constructor.
///
/// Default constructor. The number of nodes and arcs will be zero.
FullDigraph() { construct(0); }
/// \brief Constructor
///
/// Constructor.
/// \param n The number of the nodes.
FullDigraph(int n) { construct(n); }
/// \brief Resizes the digraph
///
/// This function resizes the digraph. It fully destroys and
/// rebuilds the structure, therefore the maps of the digraph will be
/// reallocated automatically and the previous values will be lost.
void resize(int n) {
Parent::notifier(Arc()).clear();
Parent::notifier(Node()).clear();
construct(n);
Parent::notifier(Node()).build();
Parent::notifier(Arc()).build();
}
/// \brief Returns the node with the given index.
///
/// Returns the node with the given index. Since this structure is
/// completely static, the nodes can be indexed with integers from
/// the range <tt>[0..nodeNum()-1]</tt>.
/// The index of a node is the same as its ID.
/// \sa index()
Node operator()(int ix) const { return Parent::operator()(ix); }
/// \brief Returns the index of the given node.
///
/// Returns the index of the given node. Since this structure is
/// completely static, the nodes can be indexed with integers from
/// the range <tt>[0..nodeNum()-1]</tt>.
/// The index of a node is the same as its ID.
/// \sa operator()()
static int index(const Node& node) { return Parent::index(node); }
/// \brief Returns the arc connecting the given nodes.
///
/// Returns the arc connecting the given nodes.
Arc arc(Node u, Node v) const {
return Parent::arc(u, v);
}
/// \brief Number of nodes.
int nodeNum() const { return Parent::nodeNum(); }
/// \brief Number of arcs.
int arcNum() const { return Parent::arcNum(); }
};
class FullGraphBase {
public:
typedef FullGraphBase Graph;
class Node;
class Arc;
class Edge;
protected:
int _node_num;
int _edge_num;
FullGraphBase() {}
void construct(int n) { _node_num = n; _edge_num = n * (n - 1) / 2; }
int _uid(int e) const {
int u = e / _node_num;
int v = e % _node_num;
return u < v ? u : _node_num - 2 - u;
}
int _vid(int e) const {
int u = e / _node_num;
int v = e % _node_num;
return u < v ? v : _node_num - 1 - v;
}
void _uvid(int e, int& u, int& v) const {
u = e / _node_num;
v = e % _node_num;
if (u >= v) {
u = _node_num - 2 - u;
v = _node_num - 1 - v;
}
}
void _stid(int a, int& s, int& t) const {
if ((a & 1) == 1) {
_uvid(a >> 1, s, t);
} else {
_uvid(a >> 1, t, s);
}
}
int _eid(int u, int v) const {
if (u < (_node_num - 1) / 2) {
return u * _node_num + v;
} else {
return (_node_num - 1 - u) * _node_num - v - 1;
}
}
public:
Node operator()(int ix) const { return Node(ix); }
static int index(const Node& node) { return node._id; }
Edge edge(const Node& u, const Node& v) const {
if (u._id < v._id) {
return Edge(_eid(u._id, v._id));
} else if (u._id != v._id) {
return Edge(_eid(v._id, u._id));
} else {
return INVALID;
}
}
Arc arc(const Node& s, const Node& t) const {
if (s._id < t._id) {
return Arc((_eid(s._id, t._id) << 1) | 1);
} else if (s._id != t._id) {
return Arc(_eid(t._id, s._id) << 1);
} else {
return INVALID;
}
}
typedef True NodeNumTag;
typedef True ArcNumTag;
typedef True EdgeNumTag;
int nodeNum() const { return _node_num; }
int arcNum() const { return 2 * _edge_num; }
int edgeNum() const { return _edge_num; }
static int id(Node node) { return node._id; }
static int id(Arc arc) { return arc._id; }
static int id(Edge edge) { return edge._id; }
int maxNodeId() const { return _node_num-1; }
int maxArcId() const { return 2 * _edge_num-1; }
int maxEdgeId() const { return _edge_num-1; }
static Node nodeFromId(int id) { return Node(id);}
static Arc arcFromId(int id) { return Arc(id);}
static Edge edgeFromId(int id) { return Edge(id);}
Node u(Edge edge) const {
return Node(_uid(edge._id));
}
Node v(Edge edge) const {
return Node(_vid(edge._id));
}
Node source(Arc arc) const {
return Node((arc._id & 1) == 1 ?
_uid(arc._id >> 1) : _vid(arc._id >> 1));
}
Node target(Arc arc) const {
return Node((arc._id & 1) == 1 ?
_vid(arc._id >> 1) : _uid(arc._id >> 1));
}
typedef True FindEdgeTag;
typedef True FindArcTag;
Edge findEdge(Node u, Node v, Edge prev = INVALID) const {
return prev != INVALID ? INVALID : edge(u, v);
}
Arc findArc(Node s, Node t, Arc prev = INVALID) const {
return prev != INVALID ? INVALID : arc(s, t);
}
class Node {
friend class FullGraphBase;
protected:
int _id;
Node(int id) : _id(id) {}
public:
Node() {}
Node (Invalid) { _id = -1; }
bool operator==(const Node node) const {return _id == node._id;}
bool operator!=(const Node node) const {return _id != node._id;}
bool operator<(const Node node) const {return _id < node._id;}
};
class Edge {
friend class FullGraphBase;
friend class Arc;
protected:
int _id;
Edge(int id) : _id(id) {}
public:
Edge() { }
Edge (Invalid) { _id = -1; }
bool operator==(const Edge edge) const {return _id == edge._id;}
bool operator!=(const Edge edge) const {return _id != edge._id;}
bool operator<(const Edge edge) const {return _id < edge._id;}
};
class Arc {
friend class FullGraphBase;
protected:
int _id;
Arc(int id) : _id(id) {}
public:
Arc() { }
Arc (Invalid) { _id = -1; }
operator Edge() const { return Edge(_id != -1 ? (_id >> 1) : -1); }
bool operator==(const Arc arc) const {return _id == arc._id;}
bool operator!=(const Arc arc) const {return _id != arc._id;}
bool operator<(const Arc arc) const {return _id < arc._id;}
};
static bool direction(Arc arc) {
return (arc._id & 1) == 1;
}
static Arc direct(Edge edge, bool dir) {
return Arc((edge._id << 1) | (dir ? 1 : 0));
}
void first(Node& node) const {
node._id = _node_num - 1;
}
static void next(Node& node) {
--node._id;
}
void first(Arc& arc) const {
arc._id = (_edge_num << 1) - 1;
}
static void next(Arc& arc) {
--arc._id;
}
void first(Edge& edge) const {
edge._id = _edge_num - 1;
}
static void next(Edge& edge) {
--edge._id;
}
void firstOut(Arc& arc, const Node& node) const {
int s = node._id, t = _node_num - 1;
if (s < t) {
arc._id = (_eid(s, t) << 1) | 1;
} else {
--t;
arc._id = (t != -1 ? (_eid(t, s) << 1) : -1);
}
}
void nextOut(Arc& arc) const {
int s, t;
_stid(arc._id, s, t);
--t;
if (s < t) {
arc._id = (_eid(s, t) << 1) | 1;
} else {
if (s == t) --t;
arc._id = (t != -1 ? (_eid(t, s) << 1) : -1);
}
}
void firstIn(Arc& arc, const Node& node) const {
int s = _node_num - 1, t = node._id;
if (s > t) {
arc._id = (_eid(t, s) << 1);
} else {
--s;
arc._id = (s != -1 ? (_eid(s, t) << 1) | 1 : -1);
}
}
void nextIn(Arc& arc) const {
int s, t;
_stid(arc._id, s, t);
--s;
if (s > t) {
arc._id = (_eid(t, s) << 1);
} else {
if (s == t) --s;
arc._id = (s != -1 ? (_eid(s, t) << 1) | 1 : -1);
}
}
void firstInc(Edge& edge, bool& dir, const Node& node) const {
int u = node._id, v = _node_num - 1;
if (u < v) {
edge._id = _eid(u, v);
dir = true;
} else {
--v;
edge._id = (v != -1 ? _eid(v, u) : -1);
dir = false;
}
}
void nextInc(Edge& edge, bool& dir) const {
int u, v;
if (dir) {
_uvid(edge._id, u, v);
--v;
if (u < v) {
edge._id = _eid(u, v);
} else {
--v;
edge._id = (v != -1 ? _eid(v, u) : -1);
dir = false;
}
} else {
_uvid(edge._id, v, u);
--v;
edge._id = (v != -1 ? _eid(v, u) : -1);
}
}
};
typedef GraphExtender<FullGraphBase> ExtendedFullGraphBase;
/// \ingroup graphs
///
/// \brief An undirected full graph class.
///
/// FullGraph is a simple and fast implmenetation of undirected full
/// (complete) graphs. It contains an edge between every distinct pair
/// of nodes, therefore the number of edges is <tt>n(n-1)/2</tt>.
/// This class is completely static and it needs constant memory space.
/// Thus you can neither add nor delete nodes or edges, however
/// the structure can be resized using resize().
///
/// This type fully conforms to the \ref concepts::Graph "Graph concept".
/// Most of its member functions and nested classes are documented
/// only in the concept class.
///
/// This class provides constant time counting for nodes, edges and arcs.
///
/// \note FullDigraph and FullGraph classes are very similar,
/// but there are two differences. While FullDigraph
/// conforms only to the \ref concepts::Digraph "Digraph" concept,
/// this class conforms to the \ref concepts::Graph "Graph" concept,
/// moreover this class does not contain a loop for each
/// node as FullDigraph does.
///
/// \sa FullDigraph
class FullGraph : public ExtendedFullGraphBase {
typedef ExtendedFullGraphBase Parent;
public:
/// \brief Default constructor.
///
/// Default constructor. The number of nodes and edges will be zero.
FullGraph() { construct(0); }
/// \brief Constructor
///
/// Constructor.
/// \param n The number of the nodes.
FullGraph(int n) { construct(n); }
/// \brief Resizes the graph
///
/// This function resizes the graph. It fully destroys and
/// rebuilds the structure, therefore the maps of the graph will be
/// reallocated automatically and the previous values will be lost.
void resize(int n) {
Parent::notifier(Arc()).clear();
Parent::notifier(Edge()).clear();
Parent::notifier(Node()).clear();
construct(n);
Parent::notifier(Node()).build();
Parent::notifier(Edge()).build();
Parent::notifier(Arc()).build();
}
/// \brief Returns the node with the given index.
///
/// Returns the node with the given index. Since this structure is
/// completely static, the nodes can be indexed with integers from
/// the range <tt>[0..nodeNum()-1]</tt>.
/// The index of a node is the same as its ID.
/// \sa index()
Node operator()(int ix) const { return Parent::operator()(ix); }
/// \brief Returns the index of the given node.
///
/// Returns the index of the given node. Since this structure is
/// completely static, the nodes can be indexed with integers from
/// the range <tt>[0..nodeNum()-1]</tt>.
/// The index of a node is the same as its ID.
/// \sa operator()()
static int index(const Node& node) { return Parent::index(node); }
/// \brief Returns the arc connecting the given nodes.
///
/// Returns the arc connecting the given nodes.
Arc arc(Node s, Node t) const {
return Parent::arc(s, t);
}
/// \brief Returns the edge connecting the given nodes.
///
/// Returns the edge connecting the given nodes.
Edge edge(Node u, Node v) const {
return Parent::edge(u, v);
}
/// \brief Number of nodes.
int nodeNum() const { return Parent::nodeNum(); }
/// \brief Number of arcs.
int arcNum() const { return Parent::arcNum(); }
/// \brief Number of edges.
int edgeNum() const { return Parent::edgeNum(); }
};
class FullBpGraphBase {
protected:
int _red_num, _blue_num;
int _node_num, _edge_num;
public:
typedef FullBpGraphBase Graph;
class Node;
class Arc;
class Edge;
class Node {
friend class FullBpGraphBase;
protected:
int _id;
explicit Node(int id) { _id = id;}
public:
Node() {}
Node (Invalid) { _id = -1; }
bool operator==(const Node& node) const {return _id == node._id;}
bool operator!=(const Node& node) const {return _id != node._id;}
bool operator<(const Node& node) const {return _id < node._id;}
};
class RedNode : public Node {
friend class FullBpGraphBase;
protected:
explicit RedNode(int pid) : Node(pid) {}
public:
RedNode() {}
RedNode(const RedNode& node) : Node(node) {}
RedNode(Invalid) : Node(INVALID){}
};
class BlueNode : public Node {
friend class FullBpGraphBase;
protected:
explicit BlueNode(int pid) : Node(pid) {}
public:
BlueNode() {}
BlueNode(const BlueNode& node) : Node(node) {}
BlueNode(Invalid) : Node(INVALID){}
};
class Edge {
friend class FullBpGraphBase;
protected:
int _id;
explicit Edge(int id) { _id = id;}
public:
Edge() {}
Edge (Invalid) { _id = -1; }
bool operator==(const Edge& arc) const {return _id == arc._id;}
bool operator!=(const Edge& arc) const {return _id != arc._id;}
bool operator<(const Edge& arc) const {return _id < arc._id;}
};
class Arc {
friend class FullBpGraphBase;
protected:
int _id;
explicit Arc(int id) { _id = id;}
public:
operator Edge() const {
return _id != -1 ? edgeFromId(_id / 2) : INVALID;
}
Arc() {}
Arc (Invalid) { _id = -1; }
bool operator==(const Arc& arc) const {return _id == arc._id;}
bool operator!=(const Arc& arc) const {return _id != arc._id;}
bool operator<(const Arc& arc) const {return _id < arc._id;}
};
protected:
FullBpGraphBase()
: _red_num(0), _blue_num(0), _node_num(0), _edge_num(0) {}
void construct(int redNum, int blueNum) {
_red_num = redNum; _blue_num = blueNum;
_node_num = redNum + blueNum; _edge_num = redNum * blueNum;
}
public:
typedef True NodeNumTag;
typedef True EdgeNumTag;
typedef True ArcNumTag;
int nodeNum() const { return _node_num; }
int redNum() const { return _red_num; }
int blueNum() const { return _blue_num; }
int edgeNum() const { return _edge_num; }
int arcNum() const { return 2 * _edge_num; }
int maxNodeId() const { return _node_num - 1; }
int maxRedId() const { return _red_num - 1; }
int maxBlueId() const { return _blue_num - 1; }
int maxEdgeId() const { return _edge_num - 1; }
int maxArcId() const { return 2 * _edge_num - 1; }
bool red(Node n) const { return n._id < _red_num; }
bool blue(Node n) const { return n._id >= _red_num; }
static RedNode asRedNodeUnsafe(Node n) { return RedNode(n._id); }
static BlueNode asBlueNodeUnsafe(Node n) { return BlueNode(n._id); }
Node source(Arc a) const {
if (a._id & 1) {
return Node((a._id >> 1) % _red_num);
} else {
return Node((a._id >> 1) / _red_num + _red_num);
}
}
Node target(Arc a) const {
if (a._id & 1) {
return Node((a._id >> 1) / _red_num + _red_num);
} else {
return Node((a._id >> 1) % _red_num);
}
}
RedNode redNode(Edge e) const {
return RedNode(e._id % _red_num);
}
BlueNode blueNode(Edge e) const {
return BlueNode(e._id / _red_num + _red_num);
}
static bool direction(Arc a) {
return (a._id & 1) == 1;
}
static Arc direct(Edge e, bool d) {
return Arc(e._id * 2 + (d ? 1 : 0));
}
void first(Node& node) const {
node._id = _node_num - 1;
}
static void next(Node& node) {
--node._id;
}
void first(RedNode& node) const {
node._id = _red_num - 1;
}
static void next(RedNode& node) {
--node._id;
}
void first(BlueNode& node) const {
if (_red_num == _node_num) node._id = -1;
else node._id = _node_num - 1;
}
void next(BlueNode& node) const {
if (node._id == _red_num) node._id = -1;
else --node._id;
}
void first(Arc& arc) const {
arc._id = 2 * _edge_num - 1;
}
static void next(Arc& arc) {
--arc._id;
}
void first(Edge& arc) const {
arc._id = _edge_num - 1;
}
static void next(Edge& arc) {
--arc._id;
}
void firstOut(Arc &a, const Node& v) const {
if (v._id < _red_num) {
a._id = 2 * (v._id + _red_num * (_blue_num - 1)) + 1;
} else {
a._id = 2 * (_red_num - 1 + _red_num * (v._id - _red_num));
}
}
void nextOut(Arc &a) const {
if (a._id & 1) {
a._id -= 2 * _red_num;
if (a._id < 0) a._id = -1;
} else {
if (a._id % (2 * _red_num) == 0) a._id = -1;
else a._id -= 2;
}
}
void firstIn(Arc &a, const Node& v) const {
if (v._id < _red_num) {
a._id = 2 * (v._id + _red_num * (_blue_num - 1));
} else {
a._id = 2 * (_red_num - 1 + _red_num * (v._id - _red_num)) + 1;
}
}
void nextIn(Arc &a) const {
if (a._id & 1) {
if (a._id % (2 * _red_num) == 1) a._id = -1;
else a._id -= 2;
} else {
a._id -= 2 * _red_num;
if (a._id < 0) a._id = -1;
}
}
void firstInc(Edge &e, bool& d, const Node& v) const {
if (v._id < _red_num) {
d = true;
e._id = v._id + _red_num * (_blue_num - 1);
} else {
d = false;
e._id = _red_num - 1 + _red_num * (v._id - _red_num);
}
}
void nextInc(Edge &e, bool& d) const {
if (d) {
e._id -= _red_num;
if (e._id < 0) e._id = -1;
} else {
if (e._id % _red_num == 0) e._id = -1;
else --e._id;
}
}
static int id(const Node& v) { return v._id; }
int id(const RedNode& v) const { return v._id; }
int id(const BlueNode& v) const { return v._id - _red_num; }
static int id(Arc e) { return e._id; }
static int id(Edge e) { return e._id; }
static Node nodeFromId(int id) { return Node(id);}
static Arc arcFromId(int id) { return Arc(id);}
static Edge edgeFromId(int id) { return Edge(id);}
bool valid(Node n) const {
return n._id >= 0 && n._id < _node_num;
}
bool valid(Arc a) const {
return a._id >= 0 && a._id < 2 * _edge_num;
}
bool valid(Edge e) const {
return e._id >= 0 && e._id < _edge_num;
}
RedNode redNode(int index) const {
return RedNode(index);
}
int index(RedNode n) const {
return n._id;
}
BlueNode blueNode(int index) const {
return BlueNode(index + _red_num);
}
int index(BlueNode n) const {
return n._id - _red_num;
}
void clear() {
_red_num = 0; _blue_num = 0;
_node_num = 0; _edge_num = 0;
}
Edge edge(const Node& u, const Node& v) const {
if (u._id < _red_num) {
if (v._id < _red_num) {
return Edge(-1);
} else {
return Edge(u._id + _red_num * (v._id - _red_num));
}
} else {
if (v._id < _red_num) {
return Edge(v._id + _red_num * (u._id - _red_num));
} else {
return Edge(-1);
}
}
}
Arc arc(const Node& u, const Node& v) const {
if (u._id < _red_num) {
if (v._id < _red_num) {
return Arc(-1);
} else {
return Arc(2 * (u._id + _red_num * (v._id - _red_num)) + 1);
}
} else {
if (v._id < _red_num) {
return Arc(2 * (v._id + _red_num * (u._id - _red_num)));
} else {
return Arc(-1);
}
}
}
typedef True FindEdgeTag;
typedef True FindArcTag;
Edge findEdge(Node u, Node v, Edge prev = INVALID) const {
return prev != INVALID ? INVALID : edge(u, v);
}
Arc findArc(Node s, Node t, Arc prev = INVALID) const {
return prev != INVALID ? INVALID : arc(s, t);
}
};
typedef BpGraphExtender<FullBpGraphBase> ExtendedFullBpGraphBase;
/// \ingroup graphs
///
/// \brief An undirected full bipartite graph class.
///
/// FullBpGraph is a simple and fast implmenetation of undirected
/// full bipartite graphs. It contains an edge between every
/// red-blue pairs of nodes, therefore the number of edges is
/// <tt>nr*nb</tt>. This class is completely static and it needs
/// constant memory space. Thus you can neither add nor delete
/// nodes or edges, however the structure can be resized using
/// resize().
///
/// This type fully conforms to the \ref concepts::BpGraph "BpGraph concept".
/// Most of its member functions and nested classes are documented
/// only in the concept class.
///
/// This class provides constant time counting for nodes, edges and arcs.
///
/// \sa FullGraph
class FullBpGraph : public ExtendedFullBpGraphBase {
public:
typedef ExtendedFullBpGraphBase Parent;
/// \brief Default constructor.
///
/// Default constructor. The number of nodes and edges will be zero.
FullBpGraph() { construct(0, 0); }
/// \brief Constructor
///
/// Constructor.
/// \param redNum The number of the red nodes.
/// \param blueNum The number of the blue nodes.
FullBpGraph(int redNum, int blueNum) { construct(redNum, blueNum); }
/// \brief Resizes the graph
///
/// This function resizes the graph. It fully destroys and
/// rebuilds the structure, therefore the maps of the graph will be
/// reallocated automatically and the previous values will be lost.
void resize(int redNum, int blueNum) {
Parent::notifier(Arc()).clear();
Parent::notifier(Edge()).clear();
Parent::notifier(Node()).clear();
Parent::notifier(BlueNode()).clear();
Parent::notifier(RedNode()).clear();
construct(redNum, blueNum);
Parent::notifier(RedNode()).build();
Parent::notifier(BlueNode()).build();
Parent::notifier(Node()).build();
Parent::notifier(Edge()).build();
Parent::notifier(Arc()).build();
}
using Parent::redNode;
using Parent::blueNode;
/// \brief Returns the red node with the given index.
///
/// Returns the red node with the given index. Since this
/// structure is completely static, the red nodes can be indexed
/// with integers from the range <tt>[0..redNum()-1]</tt>.
/// \sa redIndex()
RedNode redNode(int index) const { return Parent::redNode(index); }
/// \brief Returns the index of the given red node.
///
/// Returns the index of the given red node. Since this structure
/// is completely static, the red nodes can be indexed with
/// integers from the range <tt>[0..redNum()-1]</tt>.
///
/// \sa operator()()
int index(RedNode node) const { return Parent::index(node); }
/// \brief Returns the blue node with the given index.
///
/// Returns the blue node with the given index. Since this
/// structure is completely static, the blue nodes can be indexed
/// with integers from the range <tt>[0..blueNum()-1]</tt>.
/// \sa blueIndex()
BlueNode blueNode(int index) const { return Parent::blueNode(index); }
/// \brief Returns the index of the given blue node.
///
/// Returns the index of the given blue node. Since this structure
/// is completely static, the blue nodes can be indexed with
/// integers from the range <tt>[0..blueNum()-1]</tt>.
///
/// \sa operator()()
int index(BlueNode node) const { return Parent::index(node); }
/// \brief Returns the edge which connects the given nodes.
///
/// Returns the edge which connects the given nodes.
Edge edge(const Node& u, const Node& v) const {
return Parent::edge(u, v);
}
/// \brief Returns the arc which connects the given nodes.
///
/// Returns the arc which connects the given nodes.
Arc arc(const Node& u, const Node& v) const {
return Parent::arc(u, v);
}
/// \brief Number of nodes.
int nodeNum() const { return Parent::nodeNum(); }
/// \brief Number of red nodes.
int redNum() const { return Parent::redNum(); }
/// \brief Number of blue nodes.
int blueNum() const { return Parent::blueNum(); }
/// \brief Number of arcs.
int arcNum() const { return Parent::arcNum(); }
/// \brief Number of edges.
int edgeNum() const { return Parent::edgeNum(); }
};
} //namespace lemon
#endif //LEMON_FULL_GRAPH_H
|