This file is indexed.

/usr/include/lemon/christofides_tsp.h is in liblemon-dev 1.3.1+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
/* -*- mode: C++; indent-tabs-mode: nil; -*-
 *
 * This file is a part of LEMON, a generic C++ optimization library.
 *
 * Copyright (C) 2003-2013
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
 *
 * Permission to use, modify and distribute this software is granted
 * provided that this copyright notice appears in all copies. For
 * precise terms see the accompanying LICENSE file.
 *
 * This software is provided "AS IS" with no warranty of any kind,
 * express or implied, and with no claim as to its suitability for any
 * purpose.
 *
 */

#ifndef LEMON_CHRISTOFIDES_TSP_H
#define LEMON_CHRISTOFIDES_TSP_H

/// \ingroup tsp
/// \file
/// \brief Christofides algorithm for symmetric TSP

#include <lemon/full_graph.h>
#include <lemon/smart_graph.h>
#include <lemon/kruskal.h>
#include <lemon/matching.h>
#include <lemon/euler.h>

namespace lemon {

  /// \ingroup tsp
  ///
  /// \brief Christofides algorithm for symmetric TSP.
  ///
  /// ChristofidesTsp implements Christofides' heuristic for solving
  /// symmetric \ref tsp "TSP".
  ///
  /// This a well-known approximation method for the TSP problem with
  /// metric cost function.
  /// It has a guaranteed approximation factor of 3/2 (i.e. it finds a tour
  /// whose total cost is at most 3/2 of the optimum), but it usually
  /// provides better solutions in practice.
  /// This implementation runs in O(n<sup>3</sup>log(n)) time.
  ///
  /// The algorithm starts with a \ref spantree "minimum cost spanning tree" and
  /// finds a \ref MaxWeightedPerfectMatching "minimum cost perfect matching"
  /// in the subgraph induced by the nodes that have odd degree in the
  /// spanning tree.
  /// Finally, it constructs the tour from the \ref EulerIt "Euler traversal"
  /// of the union of the spanning tree and the matching.
  /// During this last step, the algorithm simply skips the visited nodes
  /// (i.e. creates shortcuts) assuming that the triangle inequality holds
  /// for the cost function.
  ///
  /// \tparam CM Type of the cost map.
  ///
  /// \warning CM::Value must be a signed number type.
  template <typename CM>
  class ChristofidesTsp
  {
    public:

      /// Type of the cost map
      typedef CM CostMap;
      /// Type of the edge costs
      typedef typename CM::Value Cost;

    private:

      GRAPH_TYPEDEFS(FullGraph);

      const FullGraph &_gr;
      const CostMap &_cost;
      std::vector<Node> _path;
      Cost _sum;

    public:

      /// \brief Constructor
      ///
      /// Constructor.
      /// \param gr The \ref FullGraph "full graph" the algorithm runs on.
      /// \param cost The cost map.
      ChristofidesTsp(const FullGraph &gr, const CostMap &cost)
        : _gr(gr), _cost(cost) {}

      /// \name Execution Control
      /// @{

      /// \brief Runs the algorithm.
      ///
      /// This function runs the algorithm.
      ///
      /// \return The total cost of the found tour.
      Cost run() {
        _path.clear();

        if (_gr.nodeNum() == 0) return _sum = 0;
        else if (_gr.nodeNum() == 1) {
          _path.push_back(_gr(0));
          return _sum = 0;
        }
        else if (_gr.nodeNum() == 2) {
          _path.push_back(_gr(0));
          _path.push_back(_gr(1));
          return _sum = 2 * _cost[_gr.edge(_gr(0), _gr(1))];
        }

        // Compute min. cost spanning tree
        std::vector<Edge> tree;
        kruskal(_gr, _cost, std::back_inserter(tree));

        FullGraph::NodeMap<int> deg(_gr, 0);
        for (int i = 0; i != int(tree.size()); ++i) {
          Edge e = tree[i];
          ++deg[_gr.u(e)];
          ++deg[_gr.v(e)];
        }

        // Copy the induced subgraph of odd nodes
        std::vector<Node> odd_nodes;
        for (NodeIt u(_gr); u != INVALID; ++u) {
          if (deg[u] % 2 == 1) odd_nodes.push_back(u);
        }

        SmartGraph sgr;
        SmartGraph::EdgeMap<Cost> scost(sgr);
        for (int i = 0; i != int(odd_nodes.size()); ++i) {
          sgr.addNode();
        }
        for (int i = 0; i != int(odd_nodes.size()); ++i) {
          for (int j = 0; j != int(odd_nodes.size()); ++j) {
            if (j == i) continue;
            SmartGraph::Edge e =
              sgr.addEdge(sgr.nodeFromId(i), sgr.nodeFromId(j));
            scost[e] = -_cost[_gr.edge(odd_nodes[i], odd_nodes[j])];
          }
        }

        // Compute min. cost perfect matching
        MaxWeightedPerfectMatching<SmartGraph, SmartGraph::EdgeMap<Cost> >
          mwpm(sgr, scost);
        mwpm.run();

        for (SmartGraph::EdgeIt e(sgr); e != INVALID; ++e) {
          if (mwpm.matching(e)) {
            tree.push_back( _gr.edge(odd_nodes[sgr.id(sgr.u(e))],
                                     odd_nodes[sgr.id(sgr.v(e))]) );
          }
        }

        // Join the spanning tree and the matching
        sgr.clear();
        for (int i = 0; i != _gr.nodeNum(); ++i) {
          sgr.addNode();
        }
        for (int i = 0; i != int(tree.size()); ++i) {
          int ui = _gr.id(_gr.u(tree[i])),
              vi = _gr.id(_gr.v(tree[i]));
          sgr.addEdge(sgr.nodeFromId(ui), sgr.nodeFromId(vi));
        }

        // Compute the tour from the Euler traversal
        SmartGraph::NodeMap<bool> visited(sgr, false);
        for (EulerIt<SmartGraph> e(sgr); e != INVALID; ++e) {
          SmartGraph::Node n = sgr.target(e);
          if (!visited[n]) {
            _path.push_back(_gr(sgr.id(n)));
            visited[n] = true;
          }
        }

        _sum = _cost[_gr.edge(_path.back(), _path.front())];
        for (int i = 0; i < int(_path.size())-1; ++i) {
          _sum += _cost[_gr.edge(_path[i], _path[i+1])];
        }

        return _sum;
      }

      /// @}

      /// \name Query Functions
      /// @{

      /// \brief The total cost of the found tour.
      ///
      /// This function returns the total cost of the found tour.
      ///
      /// \pre run() must be called before using this function.
      Cost tourCost() const {
        return _sum;
      }

      /// \brief Returns a const reference to the node sequence of the
      /// found tour.
      ///
      /// This function returns a const reference to a vector
      /// that stores the node sequence of the found tour.
      ///
      /// \pre run() must be called before using this function.
      const std::vector<Node>& tourNodes() const {
        return _path;
      }

      /// \brief Gives back the node sequence of the found tour.
      ///
      /// This function copies the node sequence of the found tour into
      /// an STL container through the given output iterator. The
      /// <tt>value_type</tt> of the container must be <tt>FullGraph::Node</tt>.
      /// For example,
      /// \code
      /// std::vector<FullGraph::Node> nodes(countNodes(graph));
      /// tsp.tourNodes(nodes.begin());
      /// \endcode
      /// or
      /// \code
      /// std::list<FullGraph::Node> nodes;
      /// tsp.tourNodes(std::back_inserter(nodes));
      /// \endcode
      ///
      /// \pre run() must be called before using this function.
      template <typename Iterator>
      void tourNodes(Iterator out) const {
        std::copy(_path.begin(), _path.end(), out);
      }

      /// \brief Gives back the found tour as a path.
      ///
      /// This function copies the found tour as a list of arcs/edges into
      /// the given \ref lemon::concepts::Path "path structure".
      ///
      /// \pre run() must be called before using this function.
      template <typename Path>
      void tour(Path &path) const {
        path.clear();
        for (int i = 0; i < int(_path.size()) - 1; ++i) {
          path.addBack(_gr.arc(_path[i], _path[i+1]));
        }
        if (int(_path.size()) >= 2) {
          path.addBack(_gr.arc(_path.back(), _path.front()));
        }
      }

      /// @}

  };

}; // namespace lemon

#endif