/usr/include/lemon/christofides_tsp.h is in liblemon-dev 1.3.1+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 | /* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2013
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_CHRISTOFIDES_TSP_H
#define LEMON_CHRISTOFIDES_TSP_H
/// \ingroup tsp
/// \file
/// \brief Christofides algorithm for symmetric TSP
#include <lemon/full_graph.h>
#include <lemon/smart_graph.h>
#include <lemon/kruskal.h>
#include <lemon/matching.h>
#include <lemon/euler.h>
namespace lemon {
/// \ingroup tsp
///
/// \brief Christofides algorithm for symmetric TSP.
///
/// ChristofidesTsp implements Christofides' heuristic for solving
/// symmetric \ref tsp "TSP".
///
/// This a well-known approximation method for the TSP problem with
/// metric cost function.
/// It has a guaranteed approximation factor of 3/2 (i.e. it finds a tour
/// whose total cost is at most 3/2 of the optimum), but it usually
/// provides better solutions in practice.
/// This implementation runs in O(n<sup>3</sup>log(n)) time.
///
/// The algorithm starts with a \ref spantree "minimum cost spanning tree" and
/// finds a \ref MaxWeightedPerfectMatching "minimum cost perfect matching"
/// in the subgraph induced by the nodes that have odd degree in the
/// spanning tree.
/// Finally, it constructs the tour from the \ref EulerIt "Euler traversal"
/// of the union of the spanning tree and the matching.
/// During this last step, the algorithm simply skips the visited nodes
/// (i.e. creates shortcuts) assuming that the triangle inequality holds
/// for the cost function.
///
/// \tparam CM Type of the cost map.
///
/// \warning CM::Value must be a signed number type.
template <typename CM>
class ChristofidesTsp
{
public:
/// Type of the cost map
typedef CM CostMap;
/// Type of the edge costs
typedef typename CM::Value Cost;
private:
GRAPH_TYPEDEFS(FullGraph);
const FullGraph &_gr;
const CostMap &_cost;
std::vector<Node> _path;
Cost _sum;
public:
/// \brief Constructor
///
/// Constructor.
/// \param gr The \ref FullGraph "full graph" the algorithm runs on.
/// \param cost The cost map.
ChristofidesTsp(const FullGraph &gr, const CostMap &cost)
: _gr(gr), _cost(cost) {}
/// \name Execution Control
/// @{
/// \brief Runs the algorithm.
///
/// This function runs the algorithm.
///
/// \return The total cost of the found tour.
Cost run() {
_path.clear();
if (_gr.nodeNum() == 0) return _sum = 0;
else if (_gr.nodeNum() == 1) {
_path.push_back(_gr(0));
return _sum = 0;
}
else if (_gr.nodeNum() == 2) {
_path.push_back(_gr(0));
_path.push_back(_gr(1));
return _sum = 2 * _cost[_gr.edge(_gr(0), _gr(1))];
}
// Compute min. cost spanning tree
std::vector<Edge> tree;
kruskal(_gr, _cost, std::back_inserter(tree));
FullGraph::NodeMap<int> deg(_gr, 0);
for (int i = 0; i != int(tree.size()); ++i) {
Edge e = tree[i];
++deg[_gr.u(e)];
++deg[_gr.v(e)];
}
// Copy the induced subgraph of odd nodes
std::vector<Node> odd_nodes;
for (NodeIt u(_gr); u != INVALID; ++u) {
if (deg[u] % 2 == 1) odd_nodes.push_back(u);
}
SmartGraph sgr;
SmartGraph::EdgeMap<Cost> scost(sgr);
for (int i = 0; i != int(odd_nodes.size()); ++i) {
sgr.addNode();
}
for (int i = 0; i != int(odd_nodes.size()); ++i) {
for (int j = 0; j != int(odd_nodes.size()); ++j) {
if (j == i) continue;
SmartGraph::Edge e =
sgr.addEdge(sgr.nodeFromId(i), sgr.nodeFromId(j));
scost[e] = -_cost[_gr.edge(odd_nodes[i], odd_nodes[j])];
}
}
// Compute min. cost perfect matching
MaxWeightedPerfectMatching<SmartGraph, SmartGraph::EdgeMap<Cost> >
mwpm(sgr, scost);
mwpm.run();
for (SmartGraph::EdgeIt e(sgr); e != INVALID; ++e) {
if (mwpm.matching(e)) {
tree.push_back( _gr.edge(odd_nodes[sgr.id(sgr.u(e))],
odd_nodes[sgr.id(sgr.v(e))]) );
}
}
// Join the spanning tree and the matching
sgr.clear();
for (int i = 0; i != _gr.nodeNum(); ++i) {
sgr.addNode();
}
for (int i = 0; i != int(tree.size()); ++i) {
int ui = _gr.id(_gr.u(tree[i])),
vi = _gr.id(_gr.v(tree[i]));
sgr.addEdge(sgr.nodeFromId(ui), sgr.nodeFromId(vi));
}
// Compute the tour from the Euler traversal
SmartGraph::NodeMap<bool> visited(sgr, false);
for (EulerIt<SmartGraph> e(sgr); e != INVALID; ++e) {
SmartGraph::Node n = sgr.target(e);
if (!visited[n]) {
_path.push_back(_gr(sgr.id(n)));
visited[n] = true;
}
}
_sum = _cost[_gr.edge(_path.back(), _path.front())];
for (int i = 0; i < int(_path.size())-1; ++i) {
_sum += _cost[_gr.edge(_path[i], _path[i+1])];
}
return _sum;
}
/// @}
/// \name Query Functions
/// @{
/// \brief The total cost of the found tour.
///
/// This function returns the total cost of the found tour.
///
/// \pre run() must be called before using this function.
Cost tourCost() const {
return _sum;
}
/// \brief Returns a const reference to the node sequence of the
/// found tour.
///
/// This function returns a const reference to a vector
/// that stores the node sequence of the found tour.
///
/// \pre run() must be called before using this function.
const std::vector<Node>& tourNodes() const {
return _path;
}
/// \brief Gives back the node sequence of the found tour.
///
/// This function copies the node sequence of the found tour into
/// an STL container through the given output iterator. The
/// <tt>value_type</tt> of the container must be <tt>FullGraph::Node</tt>.
/// For example,
/// \code
/// std::vector<FullGraph::Node> nodes(countNodes(graph));
/// tsp.tourNodes(nodes.begin());
/// \endcode
/// or
/// \code
/// std::list<FullGraph::Node> nodes;
/// tsp.tourNodes(std::back_inserter(nodes));
/// \endcode
///
/// \pre run() must be called before using this function.
template <typename Iterator>
void tourNodes(Iterator out) const {
std::copy(_path.begin(), _path.end(), out);
}
/// \brief Gives back the found tour as a path.
///
/// This function copies the found tour as a list of arcs/edges into
/// the given \ref lemon::concepts::Path "path structure".
///
/// \pre run() must be called before using this function.
template <typename Path>
void tour(Path &path) const {
path.clear();
for (int i = 0; i < int(_path.size()) - 1; ++i) {
path.addBack(_gr.arc(_path[i], _path[i+1]));
}
if (int(_path.size()) >= 2) {
path.addBack(_gr.arc(_path.back(), _path.front()));
}
}
/// @}
};
}; // namespace lemon
#endif
|